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Abstract

In this paper we present Discriminative Random Fields (DRF), a discrim-
inative framework for the classification of natural image regions by incor-
porating neighborhood spatial dependencies in the labels as well as the
observed data. The proposed model exploits local discriminative models
and allows to relax the assumption of conditional independence of the
observed data given the labels, commonly used in the Markov Random
Field (MRF) framework. The parameters of the DRF model are learned
using penalized maximum pseudo-likelihood method. Furthermore, the
form of the DRF model allows the MAP inference for binary classifica-
tion problems using the graph min-cut algorithms. The performance of
the model was verified on the synthetic as well as the real-world images.
The DRF model outperforms the MRF model in the experiments.

1 Introduction

For the analysis of natural images, it is important to use contextual information in the form
of spatial dependencies in images. In a probabilistic framework, this leads one to random
field modeling of the images. In this paper we address the main challenge involving such
modeling, i.e. how to model arbitrarily complex dependencies in the observed image data
as well as the labels in a principled manner.

In the literature, Markov Random Field (MRF) is a commonly used model to incorporate
contextual information [1]. MRFs are generally used in a probabilistic generative frame-
work that models the joint probability of the observed data and the corresponding labels.
In other words, let y be the observed data from an input image, where y = {yi}i∈S , yi
is the data from ith site, and S is the set of sites. Let the corresponding labels at the im-
age sites be given by x = {xi}i∈S . In the MRF framework, the posterior over the labels
given the data is expressed using the Bayes’ rule as, p(x|y) ∝ p(x,y) = p(x)p(y|x)
where the prior over labels, p(x) is modeled as a MRF. For computational tractability, the
observation or likelihood model, p(y|x) is usually assumed to have a factorized form, i.e.
p(y|x) =

∏
i∈S p(yi|xi)[1][2]. However, as noted by several researchers [3][4], this as-

sumption is too restrictive for the analysis of natural images. For example, consider a class
that contains man-made structures (e.g. buildings). The data belonging to such a class is
highly dependent on its neighbors since the lines or edges at spatially adjoining sites follow



some underlying organization rules rather than being random (See Fig. 2). This is also true
for a large number of texture classes that are made of structured patterns.

Some efforts have been made in the past to model the dependencies in the data [3][4], but
they make factored approximations of the actual likelihood for tractability. In addition,
simplistic forms of the factors preclude capturing stronger relationships in the observations
in the form of arbitrarily complex features that might be desired to discriminate between
different classes. Now considering a different point of view, for classification purposes, we
are interested in estimating the posterior over labels given the observations, i.e., p(x|y).
In a generative framework, one expends efforts to model the joint distribution p(x,y),
which involves implicit modeling of the observations. In a discriminative framework, one
models the distribution p(x|y) directly. As noted in [2], a potential advantage of using the
discriminative approach is that the true underlying generative model may be quite complex
even though the class posterior is simple. This means that the generative approach may
spend a lot of resources on modeling the generative models which are not particularly
relevant to the task of inferring the class labels. Moreover, learning the class density models
may become even harder when the training data is limited [5].

In this work we present a Discriminative Random Field (DRF) model based on the con-
cept of Conditional Random Field (CRF) proposed by Lafferty et al. [6] in the context of
segmentation and labeling of 1-D text sequences. The CRFs directly model the posterior
distribution p(x|y) as a Gibbs field. This approach allows one to capture arbitrary de-
pendencies between the observations without resorting to any model approximations. Our
model further enhances the CRFs by proposing the use of local discriminative models to
capture the class associations at individual sites as well as the interactions in the neigh-
boring sites on 2-D grid lattices. The proposed model uses local discriminative models to
achieve the site classification while permitting interactions in both the observed data and
the label field in a principled manner. The research presented in this paper alleviates several
problems with the previous version of the DRFs described in [7].

2 Discriminative Random Field

We first restate in our notations the definition of the Conditional Random Fields as given
by Lafferty et al. [6]. In this work we will be concerned with binary classification, i.e.
xi ∈ {−1, 1}. Let the observed data at site i, yi ∈ <c.
CRF Definition: Let G = (S,E) be a graph such that x is indexed by the vertices of G.
Then (x,y) is said to be a conditional random field if, when conditioned on y, the ran-
dom variables xi obey the Markov property with respect to the graph: p(xi|y,xS−{i}) =
p(xi|y,xNi), where S−{i} is the set of all nodes in G except the node i, Ni is the set of
neighbors of the node i in G, and xΩ represents the set of labels at the nodes in set Ω.

Thus CRF is a random field globally conditioned on the observations y. The condition of
positivity requiring p(x|y)>0 ∀ x has been assumed implicitly. Now, using the Hammer-
sley Clifford theorem [1] and assuming only up to pairwise clique potentials to be nonzero,
the joint distribution over the labels x given the observations y can be written as,

p(x|y)=
1

Z
exp


∑

i∈S
Ai(xi,y)+

∑

i∈S

∑

j∈Ni
Iij(xi, xj ,y)


 (1)

where Z is a normalizing constant known as the partition function, and -Ai and -Iij are the
unary and pairwise potentials respectively. With a slight abuse of notations, in the rest of
the paper we will call Ai as association potential and Iij as interaction potential. Note that
both the terms explicitly depend on all the observations y. In the DRFs, the association
potential is seen as a local decision term which decides the association of a given site to a
certain class ignoring its neighbors. The interaction potential is seen as a data dependent



smoothing function. For simplicity, in the rest of the paper we assume the random field
given in (1) to be homogeneous and isotropic, i.e. the functional forms of Ai and Iij are
independent of the locations i and j. Henceforth we will leave the subscripts and simply
use the notations A and I . Note that the assumption of isotropy can be easily relaxed at the
cost of a few additional parameters.

2.1 Association potential

In the DRF framework,A(xi,y) is modeled using a local discriminative model that outputs
the association of the site i with class xi. Generalized Linear Models (GLM) are used
extensively in statistics to model the class posteriors given the observations [8]. For each
site i, let f i(y) be a function that maps the observations y on a feature vector such that
f i : y → <l. Using a logistic function as the link, the local class posterior can be modeled
as,

P (xi=1|y)=
1

1+e−(w0+wT
1 f i(y))

=σ(w0 +wT
1 f i(y)) (2)

where w = {w0,w1} are the model parameters. To extend the logistic model to induce a
nonlinear decision boundary in the feature space, a transformed feature vector at each site
i is defined as, hi(y) = [1, φ1(f i(y)), . . . , φR(f i(y))]T where φk(.) are arbitrary non-
linear functions. The first element of the transformed vector is kept as 1 to accommodate
the bias parameter w0. Further, since xi ∈ {−1, 1}, the probability in (2) can be compactly
expressed as P (xi|y) = σ(xiw

Thi(y)). Finally, the association potential is defined as,

A(xi,y) = log(σ(xiw
Thi(y)) (3)

This transformation makes sure that the DRF yields standard logistic classifier if the inter-
action potential in (1) is set to zero. Note that the transformed feature vector at each site
i, i.e. hi(y) is a function of whole set of observations y. On the contrary, the assumption
of conditional independence of the data in the MRF framework allows one to use the data
only from a particular site, i.e. yi to get the log-likelihood, which acts as the association
potential.

As a related work, in the context of tree-structured belief networks, Feng et al. [2] used
the scaled likelihoods to approximate the actual likelihoods at each site required by the
generative formulation. These scaled likelihoods were obtained by scaling the local class
posteriors learned using a neural network. On the contrary, in the DRF model, the local
class posterior is an integral part of the full conditional model in (1). Also, unlike [2], the
parameters of the association and interaction potential are learned simultaneously in the
DRF framework.

2.2 Interaction potential

To model the interaction potential I , we first analyze the interaction potential commonly
used in the MRF framework. Note that the MRF framework does not permit the use of data
in the interaction potential. For a homogeneous and isotropic Ising model, the interaction
potential is given as I = βxixj , which penalizes every dissimilar pair of labels by the cost
β [1]. This form of interaction prefers piecewise constant smoothing without explicitly
considering discontinuities in the data. In the DRF formulation, the interaction potential is
a function of all the observations y. We would like to have similar labels at a pair of sites
for which the observed data supports such a hypothesis. In other words, we are interested
in learning a pairwise discriminative model as the interaction potential.

For a pair of sites (i, j), let µij(ψi(y),ψj(y)) be a new feature vector such that µij :<γ×
<γ → <q , where ψk : y → <γ . Denoting this feature vector as µij(y) for simplification,
the interaction potential is modeled as,

I(xi, xj ,y) = xixjv
Tµij(y) (4)



where v are the model parameters. Note that the first component of µij(y) is fixed to be
1 to accommodate the bias parameter. This form of interaction potential is much simpler
than the one proposed in [7], and makes the parameter learning a convex problem. There
are two interesting properties of the interaction potential given in (4). First, if the associ-
ation potential at each site and the interaction potentials of all the pairwise cliques except
the pair (i, j) are set to zero in (1), the DRF acts as a logistic classifier which yields the
probability of the site pair to have the same labels given the observed data. Second, the pro-
posed interaction potential is a generalization of the Ising model. The original Ising form
is recovered if all the components of vector v other than the bias parameter are set to zero
in (4). Thus, the form in (4) acts as a data-dependent discontinuity adaptive model that will
moderate smoothing when the data from the two sites is ’different’. The data-dependent
smoothing can especially be useful to absorb the errors in modeling the association poten-
tial. Anisotropy can be easily included in the DRF model by parametrizing the interaction
potentials of different directional pairwise cliques with different sets of parameters v.

3 Parameter learning and inference

Let θ be the set of DRF parameters where θ = {w,v}. The form of the DRF model
resembles the posterior of the MRF framework assuming conditionally independent data.
However, in the MRF framework, the parameters of the class generative models, p(yi|xi)
and the parameters of the prior random field on labels, p(x) are generally assumed to be
independent and learned separately [1]. In contrast, we make no such assumption and learn
all the parameters of the DRF simultaneously.

The maximum likelihood approach to learn the DRF parameters involves evaluation of the
partition function Z which is in general a NP-hard problem. One could use either sam-
pling techniques or resort to some approximations e.g. pseudo-likelihood to estimate the
parameters. In this work we used the pseudo-likelihood formulation due to its simplicity
and consistency of the estimates for the large lattice limit [1]. In the pseudo-likelihood
approach, a factored approximation is used such that, P (x|y, θ) ≈ ∏i∈S P (xi|xNi ,y, θ).
However, for the Ising model in MRFs, pseudo-likelihood tends to overestimate the inter-
action parameter β, causing the MAP estimates of the field to be very poor solutions [9].
Our experiments in the previous work [7] and Section 4 of this paper verify these obser-
vations for the interaction parameters in DRFs too. To alleviate this problem, we take a
Bayesian approach to get the maximum a posteriori estimates of the parameters. Similar
to the concept of weight decay in neural learning literature, we assume a Gaussian prior
over the interaction parameters v such that p(v|τ) = N (v; 0, τ 2I) where I is the identity
matrix. Using a prior over parameters w that leads to weight decay or shrinkage might
also be beneficial but we leave that for future exploration. The prior over parameters w is
assumed to be uniform. Thus, given M independent training images,

θ̂=arg max
θ

M∑

m=1

∑

i∈S



log σ(xiw

Thi(y))+
∑

j∈Ni
xixjv

Tµij(y)−log zi



−

1

2τ2
vTv (5)

where zi =
∑

xi∈{−1,1}
exp



log σ(xiw

Thi(y)) +
∑

j∈Ni
xixjv

Tµij(y)





If τ is given, the penalized log pseudo-likelihood in (5) is convex with respect to the model
parameters and can be easily maximized using gradient descent.

As a related work regarding the estimation of τ , Mackay [10] has suggested the use of
type II marginal likelihood. But in the DRF formulation, integrating the parameters v
is a hard problem. Another choice is to integrate out τ by choosing a non-informative



hyperprior on τ as in [11] [12]. However our experiments showed that these methods
do not yield good estimates of the parameters because of the use of pseudo-likelihood in
our framework. In the present work we choose τ by cross-validation. Alternative ways
of parameter estimation include the use of contrastive divergence [13] and saddle point
approximations resembling perceptron learning rules [14]. We are currently exploring these
possibilities.

The problem of inference is to find the optimal label configuration x given an image y,
where optimality is defined with respect to a cost function. In the current work we use the
MAP estimate as the solution to the inference problem. While using the Ising MRF model
for the binary classification problems, exact MAP solution can be computed using min-
cut/max-flow algorithms provided β ≥ 0 [9][15]. For the DRF model, the MAP estimates
can be obtained using the same algorithms. However, since these algorithms do not allow
negative interaction between the sites, the data-dependent smoothing for each clique is set
to be vTµij(y) = max{0,vTµij(y)}, yielding an approximate MAP estimate. This is
equivalent to switching the smoothing off at the image discontinuities.

4 Experiments and discussion

For comparison, a MRF framework was also learned assuming a conditionally indepen-
dent likelihood and a homogeneous and isotropic Ising interaction model. So, the MRF

posterior is p(x|y) = Z−1
m exp

(∑
i∈S log p(si(yi)|xi) +

∑
i∈S
∑
j∈Ni βxixj

)
where β

is the interaction parameter and si(yi) is a single-site feature vector at ith site such that
si : yi → <d. Note that si(yi) does not take into account influence of the data in the
neighborhood of ith site. A first order neighborhood (4 nearest neighbors) was used for
label interaction in all the experiments.

4.1 Synthetic images

The aim of these experiments was to obtain correct labels from corrupted binary images.
Four base images, 64 × 64 pixels each, were used in the experiments (top row in Fig. 1).
We compare the DRF and the MRF results for two different noise models. For each noise
model, 50 images were generated from each base image. Each pixel was considered as an
image site and the feature vector si(yi) was simply chosen to be a scalar representing the
intensity at ith site. In experiments with the synthetic data, no neighborhood data interac-
tion was used for the DRFs (i.e. f i(y)=si(yi)) to observe the gains only due to the use of
discriminative models in the association and interaction potentials. A linear discriminant
was implemented in the association potential such that hi(y) = [1,f i(y)]T . The pairwise
data vector µij(y) was obtained by taking the absolute difference of si(yi) and sj(yj).
For the MRF model, each class-conditional density, p(si(yi)|xi), was modeled as a Gaus-
sian. The noisy data from the left most base image in Fig.1 was used for training while 150
noisy images from the rest of the three base images were used for testing.

Three experiments were conducted for each noise model. (i) The interaction parameters for
the DRF (v) as well as for the MRF (β) were set to zero. This reduces the DRF model to a
logistic classifier and MRF to a maximum likelihood (ML) classifier. (ii) The parameters of
the DRF, i.e. [w,v], and the MRF, i.e. β, were learned using pseudo-likelihood approach
without any penalty, i.e. τ = ∞. (iii) Finally, the DRF parameters were learned using
penalized pseudo-likelihood and the best β for the MRF was chosen from cross-validation.
The MAP estimates of the labels were obtained using graph-cuts for both the models.

Under the first noise model, each image pixel was corrupted with independent Gaussian
noise of standard deviation 0.3. For the DRF parameter learning, τ was chosen to be
0.01. The pixelwise classification error for this noise model is given in the top row of
Table 1. Since the form of noise is the same as the likelihood model in the MRF, MRF is



Table 1: Pixelwise classification errors (%) on 150 synthetic test images. For the Gaussian
noise MRF and DRF give similar error while for ’bimodal’ noise, DRF performs better.
Note that only label interaction (i.e. no data interaction) was used for these tests (see text).

Noise ML Logistic MRF (PL) DRF (PL) MRF DRF
Gaussian 15.62 15.78 13.18 29.49 2.35 2.30
Bimodal 24.00 29.86 22.70 29.49 7.00 6.21

Figure 1: Results on synthetic images. From top, first row:original images, second row:
images corrupted with ’bimodal’ noise, third row: MRF results, fourth row: DRF results.

expected to give good results. The DRF model does marginally better than MRF even for
this case. Note that the DRF and MRF results are worse when the parameters were learned
without penalizing the pseudo-likelihood (shown in Table 1 with suffix (PL)). The MAP
inference yields oversmoothed images for these parameters. The DRF model is affected
more because all the parameters in DRFs are learned simultaneously unlike MRFs.

In the second noise model each pixel was corrupted with independent mixture of Gaus-
sian noise. For each class, a mixture of two Gaussians with equal mixing weights was
used yielding a ’bimodal’ class noise. The mixture model parameters (mean, std) for the
two classes were chosen to be [(0.08, 0.03), (0.46, 0.03)], and [(0.55, 0.02), (0.42, 0.10)]
inspired by [5]. The classification results are shown in the bottom row of Table 1. An
interesting point to note is that DRF yields lower error than MRF even when the logistic
classifier has higher error than the ML classifier on the test data. For a typical noisy version
of the four base images, the performance of different techniques in compared in Fig. 1.



Table 2: Detection Rates (DR) and False Positives (FP) for the test set containing 129
images (49, 536 sites). FP for logistic classifier were kept to be the same as for DRF for
DR comparison. Superscript ′−′ indicates no neighborhood data interaction was used.

MRF Logistic− DRF− Logistic DRF
DR (%) 58.35 47.50 61.79 60.80 72.54

FP (per image) 2.44 2.28 2.28 1.76 1.76

4.2 Real-World images

The proposed DRF model was applied to the task of detecting man-made structures in
natural scenes. The aim was to label each image site as structured or nonstructured. The
training and the test set contained 108 and 129 images respectively, each of size 256×384
pixels, from the Corel image database. Each nonoverlapping 16×16 pixels block is called
an image site. For each image site i, a 5-dim single-site feature vector si(yi) and a 14-dim
multiscale feature vector f i(y) is computed using orientation and magnitude based features
as described in [16]. Note that f i(y) incorporates data interaction from neighboring sites.
For the association potentials, a transformed feature vectorhi(y) was computed at each site
i using quadratic transforms of vector f i(y). The pairwise data vectorµij(y) was obtained
by concatenating the two vectors f i(y) and f j(y). For the DRF parameter learning, τ was
chosen to be 0.001. For the MRF, each class conditional density was modeled as a mixture
of five Gaussians. Use of a single Gaussian for each class yielded very poor results.

For two typical images from the test set, the detection results for the MRF and the DRF
models are given in Fig. 2. The blocks detected as structured have been shown enclosed
within an artificial boundary. The DRF results show higher detections with lower false
positives. For a quantitative evaluation, we compared the detection rates and the number
of false positives per image for different techniques. For the comparison of detection rates,
in all the experiments, the decision threshold of the logistic classifier was fixed such that it
yields the same false positive rate as the DRF. The first set of experiments was conducted
using the single-site features for all the three methods. Thus, no neighborhood data in-
teraction was used for both the logistic classifier and the DRF, i.e. f i(y) = si(yi). The
comparative results for the three methods are given in Table 2 under ’MRF’, ’Logistic−’
and ’DRF−’. The detection rates of the MRF and the DRF are higher than the logistic clas-
sifier due to the label interaction. However, higher detection rate and lower false positives
for the DRF in comparison to the MRF indicate the gains due to the use of discriminative
models in the association and interaction potentials in the DRF. In the next experiment,
to take advantage of the power of the DRF framework, data interaction was allowed for
both the logistic classifier as well as the DRF (’Logistic’ and ’DRF’ in Table 2). The DRF
detection rate increases substantially and the false positives decrease further indicating the
importance of allowing the data interaction in addition to the label interaction.

5 Conclusion and future work

We have presented discriminative random fields which provide a principled approach for
combining local discriminative classifiers that allow the use of arbitrary overlapping fea-
tures, with adaptive data-dependent smoothing over the label field. We are currently explor-
ing alternative ways of parameter learning using contrastive divergence and saddle point
approximations. One of the further aspects of the DRF model is the use of general kernel
mappings to increase the classification accuracy. However, one will need some method to
induce sparseness to avoid overfitting [12]. In addition, we intend to extend the model to
accommodate multiclass classification problems.
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Figure 2: Example structure detection results. Left column: MRF results. Right column:
DRF results. DRF has higher detection rate with lower false positives.
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