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Predicting Human Brain Activity
Associated with the Meanings
of Nouns
Tom M. Mitchell,1* Svetlana V. Shinkareva,2 Andrew Carlson,1 Kai-Min Chang,3,4
Vicente L. Malave,5 Robert A. Mason,3 Marcel Adam Just3

The question of how the human brain represents conceptual knowledge has been debated in
many scientific fields. Brain imaging studies have shown that different spatial patterns of neural
activation are associated with thinking about different semantic categories of pictures and
words (for example, tools, buildings, and animals). We present a computational model that predicts
the functional magnetic resonance imaging (fMRI) neural activation associated with words for which
fMRI data are not yet available. This model is trained with a combination of data from a trillion-word
text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once
trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus,
with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

The question of how the human brain rep-
resents and organizes conceptual knowledge
has been studied bymany scientific commu-

nities. Neuroscientists using brain imaging studies
(1–9) have shown that distinct spatial patterns of
fMRI activity are associated with viewing pictures
of certain semantic categories, including tools, build-
ings, and animals. Linguists have characterized dif-
ferent semantic roles associated with individual
verbs, aswell as the types of nouns that can fill those
semantic roles [e.g., VerbNet (10) and WordNet
(11, 12)]. Computational linguists have analyzed
the statistics of very large text corpora and have
demonstrated that a word’s meaning is captured to
some extent by the distribution of words and phrases
with which it commonly co-occurs (13–17). Psy-
chologists have studied word meaning through
feature-norming studies (18) in which participants
are asked to list the features they associate with var-
ious words, revealing a consistent set of core fea-
tures across individuals and suggesting a possible
grouping of features by sensory-motor modalities.
Researchers studying semantic effects of brain dam-
age have found deficits that are specific to given
semantic categories (such as animals) (19–21).

This variety of experimental results has led to
competing theories of how the brain encodesmean-
ings of words and knowledge of objects, including
theories that meanings are encoded in sensory-
motor cortical areas (22, 23) and theories that they
are instead organized by semantic categories such
as living and nonliving objects (18, 24). Although
these competing theories sometimes lead to differ-

ent predictions (e.g., of which naming disabilities
will co-occur in brain-damaged patients), they are
primarily descriptive theories that make no attempt
to predict the specific brain activation that will be
produced when a human subject reads a particular
word or views a drawing of a particular object.

We present a computational model that makes
directly testable predictions of the fMRI activity as-
sociated with thinking about arbitrary concrete
nouns, including many nouns for which no fMRI
data are currently available. The theory underlying
this computational model is that the neural basis of
the semantic representation of concrete nouns is
related to the distributional properties of thosewords
in a broadly based corpus of the language. We de-
scribe experiments training competing computation-
al models based on different assumptions regarding
the underlying features that are used in the brain
for encoding of meaning of concrete objects. We
present experimental evidence showing that the best

of these models predicts fMRI neural activity well
enough that it can successfully match words it has
not yet encountered to their previously unseen fMRI
images, with accuracies far above those expected
by chance. These results establish a direct, predic-
tive relationship between the statistics of word
co-occurrence in text and the neural activation
associated with thinking about word meanings.

Approach. We use a trainable computational
model that predicts the neural activation for any
given stimulus word w using a two-step process,
illustrated in Fig. 1. Given an arbitrary stimulus
word w, the first step encodes the meaning of w as
a vector of intermediate semantic features computed
from the occurrences of stimulus word w within a
very large text corpus (25) that captures the typ-
ical use of words in English text. For example,
one intermediate semantic feature might be the
frequency with which w co-occurs with the verb
“hear.” The second step predicts the neural fMRI
activation at every voxel location in the brain, as a
weighted sum of neural activations contributed by
each of the intermediate semantic features. More
precisely, the predicted activation yv at voxel v in
the brain for word w is given by

yv ¼ ∑
n

i¼1
cvi fiðwÞ ð1Þ

where fi(w) is the value of the ith intermediate
semantic feature for word w, n is the number of
semantic features in the model, and cvi is a learned
scalar parameter that specifies the degree to which
the ith intermediate semantic feature activates voxel
v. This equation can be interpreted as predicting the
full fMRI image across all voxels for stimulus word
w as a weighted sum of images, one per semantic
feature fi. These semantic feature images, defined
by the learned cvi, constitute a basis set of compo-
nent images that model the brain activation asso-
ciated with different semantic components of the
input stimulus words.
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Fig. 1. Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation
is predicted in a two-step process. The first step encodes the meaning of the input stimulus word in
terms of intermediate semantic features whose values are extracted from a large corpus of text
exhibiting typical word use. The second step predicts the fMRI image as a linear combination of the
fMRI signatures associated with each of these intermediate semantic features.
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To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned cvi co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.
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Fig. 3. Locations of
most accurately pre-
dicted voxels. Surface
(A) and glass brain (B)
rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.

30 MAY 2008 VOL 320 SCIENCE www.sciencemag.org1192

RESEARCH ARTICLES

 o
n 

M
ay

 3
0,

 2
00

8 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


ponents that can be linearly recombined to suc-
cessfully predict the fMRI activation for arbitrary
new stimuli. Motivated by existing conjectures re-
garding the centrality of sensory-motor features in
neural representations of objects (18, 29), we de-
signed a set of 25 semantic features defined by 25
verbs: “see,” “hear,” “listen,” “taste,” “smell,” “eat,”
“touch,” “rub,” “lift,” “manipulate,” “run,” “push,”
“fill,” “move,” “ride,” “say,” “fear,” “open,” “ap-
proach,” “near,” “enter,” “drive,” “wear,” “break,”
and “clean.” These verbs generally correspond to
basic sensory and motor activities, actions per-
formed on objects, and actions involving changes to
spatial relationships. For each verb, the value of the
corresponding intermediate semantic feature for a
given input stimulus word w is the normalized co-
occurrence count ofwwith any of three forms of the
verb (e.g., “taste,” “tastes,” or “tasted”) over the text
corpus. One exceptionwasmade for the verb “see.”
Its past tense was omitted because “saw” is one of
our 60 stimulus nouns. Normalization consists of
scaling the vector of 25 feature values to unit length.

We trained a separate computational model for
each of the nine participants, using this set of 25

semantic features.Each trainedmodelwas evaluated
by means of a “leave-two-out” cross-validation ap-
proach, in which the model was repeatedly trained
with only 58 of the 60 available word stimuli and
associated fMRI images. Each trained model was
tested by requiring that it first predict the fMRI
images for the two “held-out”words and thenmatch
these correctly to their corresponding held-out fMRI
images. The process of predicting the fMRI image
for a held-out word is illustrated in Fig. 2A. The
match between the two predicted and the two ob-
served fMRI images was determined by which
match had a higher cosine similarity, evaluated over
the 500 image voxels with the most stable
responses across training presentations (26). The
expected accuracy inmatching the left-out words to
their left-out fMRI images is 0.50 if the model per-
forms at chance levels. An accuracy of 0.62 or
higher for a single model trained for a single par-
ticipantwas determined to be statistically significant
(P<0.05) relative to chance, based on the empirical
distribution of accuracies for randomly generated
null models (26). Similarly, observing an accuracy
of 0.62 or higher for each of the nine independently

trained participant-specific models would be statis-
tically significant at P < 10−11.

The cross-validated accuracies in matching two
unseen word stimuli to their unseen fMRI images
for models trained on participants P1 through P9
were 0.83, 0.76, 0.78, 0.72, 0.78, 0.85, 0.73, 0.68,
and 0.82 (mean = 0.77). Thus, all nine participant-
specific models exhibited accuracies significantly
above chance levels. The models succeeded in dis-
tinguishing pairs of previously unseen words in
over three-quarters of the 15,930 cross-validated
test pairs across these nine participants. Accuracy
across participants was strongly correlated (r =
–0.66) with estimated headmotion (i.e., the less the
participant’s head motion, the greater the prediction
accuracy), suggesting that the variation in accu-
racies across participants is explained at least in part
by noise due to head motion.

Visual inspection of the predicted fMRI images
produced by the trained models shows that these
predicted images frequently capture substantial as-
pects of brain activation associated with stimulus
words outside the training set. An example is shown
in Fig. 2B,where themodelwas trained on 58 of the
60 stimuli for participant P1, omitting “celery” and
“airplane.”Although the predicted fMRI images for
“celery” and “airplane” are not perfect, they cap-
ture substantial components of the activation ac-
tually observed for these two stimuli. A plot of
similarities between all 60 predicted and observed
fMRI images is provided in fig. S3.

The model’s predictions are differentially accu-
rate in different brain locations, presumably more
accurate in those locations involved in encoding
the semantics of the input stimuli. Figure 3 shows
the model’s “accuracy map,” indicating the cortical
regions where the model’s predicted activations
for held-out words best correlate with the observed
activations, both for an individual participant (P5)
and averaged over all nine participants. These
highest-accuracy voxels are meaningfully distrib-
uted across the cortex, with the left hemisphere
more strongly represented, appearing in left inferior
temporal, fusiform, motor cortex, intraparietal
sulcus, inferior frontal, orbital frontal, and the oc-
cipital cortex. This left hemisphere dominance is
consistent with the generally held view that the left
hemisphere plays a larger role than the right hemi-
sphere in semantic representation. High-accuracy
voxels also appear in both hemispheres in the oc-
cipital cortex, intraparietal sulcus, and some of the
inferior temporal regions, all of which are also
likely to be involved in visual object processing.

It is interesting to consider whether these trained
computational models can extrapolate to make ac-
curate predictions for words in new semantic cat-
egories beyond those in the training set. To test
this, we retrained the models but this time we ex-
cluded from the training set all examples belonging
to the same semantic category as either of the two
held-out test words (e.g., when testing on “celery”
versus “airplane,” we removed every food and ve-
hicle stimulus from the training set, training on only
50 words). In this case, the cross-validated predic-
tion accuracies were 0.74, 0.69, 0.67, 0.69, 0.64,

Fig. 4. Learned voxel
activation signatures for
3 of the 25 semantic fea-
tures, for participant P1
(top panels) and averaged
over all nine participants
(bottom panels). Just one
horizontal z slice is shown
for each. The semantic fea-
ture associated with the
verb “eat” predicts sub-
stantial activity in right
pars opercularis, which is
believed to be part of the
gustatory cortex. The se-
mantic feature associated
with “push” activates the
right postcentral gyrus,
which is believed to be
associated with premotor
planning. The semantic feature for the verb “run” activates the posterior portion of the right superior temporal
sulcus, which is believed to be associated with the perception of biological motion.

“eat” “push” “run”

Participant
P1P1

Mean over 
participants

Pars opercularis
(z=24 mm)

Postcentral gyrus
(z=30 mm)

Superior temporal 
sulcus (posterior)

(z=12 mm)

Fig. 5. Accuracies of models based
on alternative intermediate semantic
feature sets. The accuracy of compu-
tational models that use 115 dif-
ferent randomly selected sets of
intermediate semantic features is
shown in the blue histogram. Each
feature set is based on 25 words
chosen at random from the 5000
most frequent words, excluding
the 500 most frequent words and
the stimulus words. The accuracy of
the feature set based on manually
chosen sensory-motor verbs is shown
in red. The accuracy of each feature
set is the average accuracy obtained
when it was used to train models for
each of the nine participants.
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0.78, 0.68, 0.64, and 0.78 (mean = 0.70). This
ability of the model to extrapolate to words se-
mantically distant from those on which it was
trained suggests that the semantic features and
their learned neural activation signatures of the
model may span a diverse semantic space.

Given that the 60 stimuli are composed of five
items in each of 12 semantic categories, it is also
interesting to determine the degree to which the
model can make accurate predictions even when
the two held-out test words are from the same cat-
egory, where the discrimination is likely to be more
difficult (e.g., “celery” versus “corn”). Thesewithin-
category prediction accuracies for the nine individ-
uals were 0.61, 0.58, 0.58, 0.72, 0.58, 0.77, 0.58,
0.52, and 0.68 (mean = 0.62), indicating that al-
though the model’s accuracy is lower when it is
differentiating between semantically more similar
stimuli, on average its predictions nevertheless
remain above chance levels.

In order to test the ability of the model to dis-
tinguish among an even more diverse range of
words, we tested its ability to resolve among 1000
highly frequent words (the 1300 most frequent
tokens in the text corpus, omitting the 300 most
frequent). Specifically, we conducted a leave-one-
out test in which the model was trained using 59 of
the 60 available stimulus words. It was then given
the fMRI image for the held-out word and a set of
1001 candidate words (the 1000 frequent tokens,
plus the held-out word). It ranked these 1001
candidates by first predicting the fMRI image for
each candidate and then sorting the 1001 candidates
by the similarity between their predicted fMRI im-
age and the fMRI image it was provided. The ex-
pected percentile rank of the correct word in this
ranked list would be 0.50 if the model were op-
erating at chance. The observed percentile ranks
for the nine participants were 0.79, 0.71, 0.74, 0.67,
0.73, 0.77, 0.70, 0.63, and 0.76 (mean = 0.72), in-
dicating that the model is to some degree appli-
cable across a semantically diverse set of words
[see (26) for details].

A second approach to evaluating our compu-
tation model, beyond quantitative measurements of
its prediction accuracy, is to examine the learned
basis set of fMRI signatures for the 25 verb-based
signatures. These 25 signatures represent themodel’s
learned decomposition of neural representations into
their component semantic features and provide the
basis for all of its predictions. The learned signatures
for the semantic features “eat,” “push,” and “run”
are shown in Fig. 4. Notice that each of these signa-
tures predicts activation inmultiple cortical regions.

Examining the semantic feature signatures in
Fig. 4, one can see that the learned fMRI signature
for the semantic feature “eat” predicts strong activa-
tion in opercular cortex (as indicated by the arrows
in the left panels), which others have suggested is a
component of gustatory cortex involved in the sense
of taste (30). Also, the learned fMRI signature for
“push” predicts substantial activation in the right
postcentral gyrus, which is widely assumed to be
involved in the planning of complex, coordinated
movements (31). Furthermore, the learned signature

for “run” predicts strong activation in the posterior
portion of the right superior temporal lobe along the
sulcus, which others have suggested is involved in
perception of biological motion (32, 33). To sum-
marize, these learned signatures cause the model to
predict that the neural activity representing a noun
will exhibit activity in gustatory cortex to the degree
that this noun co-occurs with the verb “eat,” in mo-
tor areas to the degree that it co-occurs with “push,”
and in cortical regions related to body motion to the
degree that it co-occurs with “run.” Whereas the
top row of Fig. 4 illustrates these learned signa-
tures for participant P1, the bottom row shows the
mean of the nine signatures learned independently
for the nine participants. The similarity of the two
rows of signatures demonstrates that these learned
intermediate semantic feature signatures exhibit
substantial commonalities across participants.

The learned signatures for several other verbs
also exhibit interesting correspondences between
the function of cortical regions in which they pre-
dict activation and that verb’s meaning, though in
some cases the correspondence holds for only a
subset of the nine participants. For example, ad-
ditional features for participant P1 include the sig-
nature for “touch,” which predicts strong activation
in somatosensory cortex (right postcentral gyrus),
and the signature for “listen,” which predicts acti-
vation in language-processing regions (left posterior
superior temporal sulcus and left pars triangularis),
though these trends are not common to all nine
participants. The learned feature signatures for all
25 semantic features are provided at (26).

Given the success of this set of 25 intermediate
semantic features motivated by the conjecture that
the neural components corresponding to basic se-
mantic properties are related to sensory-motor
verbs, it is natural to ask how this set of interme-
diate semantic features compares with alternatives.
To explore this, we trained and tested models based
on randomly generated sets of semantic features,
each defined by 25 randomly drawnwords from the
5000 most frequent words in the text corpus, ex-
cluding the 60 stimulus words as well as the 500
most frequent words (which contain many function
words and words without much specific semantic
content, such as “the” and “have”). A total of 115
random feature sets was generated. For each feature
set,modelswere trained for all nine participants, and
the mean prediction accuracy over these nine
models was measured. The distribution of resulting
accuracies is shown in the blue histogram in Fig. 5.
The mean accuracy over these 115 feature sets is
0.60, the SD is 0.041, and the minimum and max-
imum accuracies are 0.46 and 0.68, respectively.
The random feature sets generating the highest and
lowest accuracy are shown at (26). The fact that the
mean accuracy is greater than 0.50 suggests that
many feature sets capture some of the semantic
content of the 60 stimulus words and some of the
regularities in the corresponding brain activation.
However, among these 115 feature sets, none came
close to the 0.77 mean accuracy of our manually
generated feature set (shown by the red bar in the
histogram in Fig. 5). This result suggests the set of

features defined by our sensory-motor verbs is
somewhat distinctive in capturing regularities in the
neural activation encoding the semantic content of
words in the brain.

Discussion. The results reported here estab-
lish a direct, predictive relationship between the
statistics of word co-occurrence in text and the
neural activation associated with thinking about
word meanings. Furthermore, the computational
models trained to make these predictions provide
insight into how the neural activity that represents
objects can be decomposed into a basis set of
neural activation patterns associated with different
semantic components of the objects.

The success of the specificmodel,which uses 25
sensory-motor verbs (as compared with alternative
models based on randomly sampled sets of 25
semantic features), lends credence to the conjecture
that neural representations of concrete nouns are in
part grounded in sensory-motor features. However,
the learned signatures associated with the 25
intermediate semantic features also exhibit signifi-
cant activation in brain areas not directly associated
with sensory-motor function, including frontal re-
gions. Thus, it appears that the basis set of features
that underlie neural representations of concrete
nouns involves much more than sensory-motor
cortical regions.

Other recent work has suggested that the neural
encodings that represent concrete objects are at least
partly shared across individuals, based on evidence
that it is possible to identify which of several items a
person is viewing, through only their fMRI image
and a classifiermodel trained fromother people (34).
The results reported here show that the learned
basis set of semantic features also shares certain
commonalities across individuals and may help
determine more directly which factors of neural
representations are similar and different across
individuals.

Our approach is analogous in some ways to re-
search that focuses on lower-level visual features of
picture stimuli to analyze fMRI activation asso-
ciated with viewing the picture (9, 35, 36) and to
research that compares perceived similarities be-
tween object shapes to their similarities based on
fMRI activation (37). Recent work (36) has shown
that it is possible to predict aspects of fMRI activa-
tion in parts of visual cortex based on visual features
of arbitrary scenes and to use this predicted activa-
tion to identify which of a set of candidate scenes an
individual is viewing. Our work differs from these
efforts, in that we focus on encodings of more ab-
stract semantic concepts signified by words and
predict brain-wide fMRI activations based on text
corpus features that capture semantic aspects of the
stimulusword, rather than visual features that capture
perceptual aspects. Our work is also related to recent
research that uses machine learning algorithms to
train classifiers ofmental states based on fMRI data
(38, 39), though it differs in that our models are
capable of extrapolating to predict fMRI images for
mental states not present in the training set.

This research represents a shift in the paradigm
for studying neural representations in the brain,
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moving fromwork that has cataloged the patterns of
fMRI activity associated with specific categories of
words andpictures to instead building computational
models that predict the fMRI activity for arbitrary
words (including thousands of words for which
fMRI data are not yet available). This is a natural
progression as the field moves from pretheoretical
cataloging of data toward development of computa-
tional models and the beginnings of a theory of neu-
ral representations. Our computational models can
be viewed as encoding a restricted formof predictive
theory, one that answers such questions as “What is
the predicted fMRI neural activity encoding word
w?” and “What is the basis set of semantic features
and corresponding components of neural activation
that explain the neural activations encoding mean-
ings of concrete nouns?” Although we remain far
from a causal theory explaining how the brain syn-
thesizes these representations from its sensory in-
puts, answers even to these questions promise to
shed light on someof the key regularities underlying
neural representations of meaning.
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The Cassiopeia A Supernova
Was of Type IIb
Oliver Krause,1* Stephan M. Birkmann,1 Tomonori Usuda,2 Takashi Hattori,2
Miwa Goto,1 George H. Rieke,3 Karl A. Misselt3

Cassiopeia A is the youngest supernova remnant known in the Milky Way and a unique laboratory
for supernova physics. We present an optical spectrum of the Cassiopeia A supernova near
maximum brightness, obtained from observations of a scattered light echo more than three
centuries after the direct light of the explosion swept past Earth. The spectrum shows that
Cassiopeia A was a type IIb supernova and originated from the collapse of the helium core of a red
supergiant that had lost most of its hydrogen envelope before exploding. Our finding concludes a
long-standing debate on the Cassiopeia A progenitor and provides new insight into supernova
physics by linking the properties of the explosion to the wealth of knowledge about its remnant.

The supernova remnant Cassiopeia A is one
of the most-studied objects in the sky, with
observations from the longest radio waves

to gamma rays. The remnant expansion rate indi-
cates that the core of its progenitor star collapsed
around the year 1681 ± 19, as viewed from Earth
(1). Because of its youth and proximity of 3:4þ0:3

−0:1
kpc (2), Cas A provides a unique opportunity to
probe the death of a massive star and to test theo-
retical models of core-collapse supernovae. How-
ever, such tests are compromised because the Cas
A supernova showed at most a faint optical dis-

play on Earth at the time of explosion. The lack of
a definitive sighting means that there is almost no
direct information about the type of the explosion,
and the true nature of its progenitor star has been a
puzzle since the discovery of the remnant (3).

The discovery of light echoes due both to scat-
tering and to absorption and re-emission of the out-
going supernova flash (4, 5) by the interstellar dust
near the remnant raised the possibility of conduct-
ing a postmortem study of the last historic Galactic
supernova by observing its scattered light. Similar-
ly, the determination of a supernova spectral type

long after its explosion using light echoeswas recent-
ly demonstrated for an extragalactic supernova (6).

We havemonitored infrared echoes around Cas
A at a wavelength of 24 mm with use of the
multiband imaging photometer (MIPS) instrument
aboard the Spitzer Space Telescope (4). The results
confirm that they arise from the flash emitted in the
initial explosion of Cas A (5). An image taken on
20 August 2007 revealed a bright (flux density
F24mm = 0.36 ± 0.04 Jy, 1 Jy ≡ 10−26 Wm−2 Hz−1)
and mainly unresolved echo feature located 80 arc
min northwest of CasA (position angle 311° east of
north). It had not been detected (F24mm < 2 mJy;
5-s) on two previous images of this region obtained
on 2 October 2006 and 23 January 2007 (Fig. 1).

An image obtained on 7 January 2008 shows
that the peak of the echo has dropped in surface
brightness by a factor of 18 and shifted toward the
west. Transient optical emission associated with
the infrared echo was detected in an R-band
image obtained at a wavelength of 6500 Å at the
Calar Alto 2.2-m telescope on 6 October 2007

1Max-Planck-Institut für Astronomie, Königstuhl 17, 69117
Heidelberg, Germany. 2National Astronomical Observatory
of Japan, 650 North A'ohoku Place, Hilo, HI 96720, USA.
3Steward Observatory, 933 North Cherry Avenue, Tucson,
AZ 85721, USA.
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