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Abstract. We present a comprehensive demonstration of how auto-
mated reasoning can assist mathematical research, both in the discovery
of conjectures and in their verification. Our focus is a discrete geometry
problem: What is µ5(n), the minimum number of convex pentagons in-
duced by n points in the plane? In the first stage toward tackling this
problem, automated reasoning tools guide discovery and conjectures: we
use SAT-based tools to find abstract configurations of points that would
induce few pentagons. Afterward, we use Operations Research tools to
find and visualize realizations of these configurations in the plane, if
they exist. Mathematical thought and intuition are still vital parts of
the process for turning the obtained visualizations into general construc-
tions. A surprisingly simple upper bound follows from our constructions:
µ5(n) ≤

(⌊n/2⌋
5

)
+
(⌈n/2⌉

5

)
, and we conjecture it is optimal. In the second

stage, we turn our focus to verifying this conjecture. Using MaxSAT, we
confirm that µ5(n) matches the conjectured values for n ≤ 16, thereby
improving both the existing lower and upper bounds for n ∈ [12, 16]. Our
MaxSAT results rely on two mathematical theorems with pen-and-paper
proofs, highlighting once again the rich interplay between automated and
traditional mathematics.

Keywords: MaxSAT · Convex Pentagons · Computational Geometry.

1 Introduction

Computation has played an increasingly large role within mathematics over the
last 50 years. Back in 1976, Appel and Haken proved the celebrated Four Color
Theorem using a significant amount of computation [8], which ultimately led
to a formally verified Coq proof, written by Georges Gonthier in 2004 [27, 28].
These results serve to highlight a dual role of computing in mathematics: solving
problems and verifying solutions [10]. In present times, Large Language Mod-
els (LLMs) emerge as a new actor in computer-assisted mathematics; making
progress in the cap-set problem [40], solving olympiad-level geometry prob-
lems [50] and assisting formal theorem proving [53]. Despite claims of progress
in AI threatening mathematicians’ jobs [19], we adhere to the words of Jordan
Ellenberg [16], co-author in the recent LLMs for the cap-set problem article [40]:

http://orcid.org/0000-0003-2295-1299
http://orcid.org/0000-0001-7319-4377
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0003-1525-1382


2 Subercaseaux et al.

“What’s most exciting to me is modeling new modes of human–machine
collaboration, [...] I don’t look to use these as a replacement for human

mathematicians, but as a force multiplier.”

In that spirit, this article presents a self-contained story of human-machine col-
laboration in mathematics, showcasing how automated reasoning tools can be
incorporated in a mathematician’s toolkit.

Automated Reasoning. Automated reasoning tools have been successfully
used in the past to solve mathematical problems of diverse areas: Erdős Discrep-
ancy Conjecture [35], Keller’s conjecture [14], the Packing Chromatic number of
the infinite grid [47], and the Pythagorean Triples Problem [31], amongst many
others. Interestingly, before the recent progress made with LLMs [40], the prior
state of the art for the cap-set problem was obtained via SAT solving [51]. In the
context of discrete geometry, Scheucher has used SAT solving to obtain state-of-
the-art results in Erdős-Szekeres type problems [32, 42, 43], making it our most
closely related work. The main novelty of this article is that we apply automated
reasoning tools throughout the different stages of a mathematical problem: to
guide the discovery of mathematical constructions, elicit a conjecture, and finally
verify it until a certain bound to increase our confidence in it.

The Pentagon Minimization Problem. In 1933, Klein presented the follow-
ing problem [29]: If five points lie on a plane, without three on a straight line,
prove that four of the points will make a convex quadrilateral. Klein’s problem
inspired two natural generalizations with a long lasting impact on combinatorial
geometry:

Problem 1. For a given k ≥ 3, is there always a minimum number of points
n = g(k), such that any set of n points in the plane, without three in a line, is
guaranteed to contain k points that are vertices of a convex k-gon?

Problem 2. For a given k ≥ 3, what is the minimum number of convex k-gons,
µk(n), one can obtain after placing n points in the plane without three in a line?

Erdős and Szekeres published an affirmative answer to Problem 1 in 1935.
Szekeres and Klein married shortly afterward, leading Erdős to refer to Prob-
lem 1 as the “Happy Ending Problem” [38]. Problem 2, on the other hand, is
directly mentioned for the first time by Erdős and Guy in 1973 [20]: “More gen-
erally, one can ask for the least number of convex k-gons determined by n points
in the plane. A standard argument we show in Section 6 implies that the limits
ck := limn→∞ µk(n)/

(
n
k

)
are well-defined. Note that c3 = 1 as every set of 3

points in general position forms a triangle. Perhaps surprisingly, c4 is still un-
known despite having received significant attention [1,4]; the best known bounds
are roughly 0.3799 ≤ c4 ≤ 0.3804 [4,5]. Computation has played a crucial role in:
(i) improving the bounds on c4, (ii) computing µk(n) for small values of k and
n, and (iii) classifying small sets of points according to their geometric relation-
ships [3]. As of today, the value of µ4(n) is only known for n ≤ 27 and n = 30 [1],
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Table 1: Improvements on µ5(n). Brackets indicate the range of values in which
µ5(·) was known to belong.

# of points (n) ≤8 9 10 11 12 13 14 15 16

Previously [2] 0 1 2 7 [12, 13] [20, 34] [40, 62] [60, 113] —
Our work 0 1 2 7 12 27 42 77 112

and less is known for k ≥ 5 [2, 3, 7, 24], where the question raised by Erdős and
Guy, 50 years ago, remains widely open. We provide new insights into µ5(n) and
c5, and opening directions for studying µk(n) and ck for larger values of k as well.

Our contributions and outline. This article makes progress on Problem 2
in the particular case of k = 5. As shown in Table 1, we fully determine µ5(n)
for n ≤ 16, furthering prior results which reached n = 11 [2]. We start by
providing some background into the geometry of the problem and known val-
ues of µ5(n) in Section 2, and continue in Section 3 by presenting an initial
exploration of µ5(n) through Stochastic Local Search (SLS) using signotopes.
Given the absence of open-source programs that find concrete point realizations
of signotopes, we present in Section 4 a simple local-search program that finds
them. We depict particular realizations obtained for the satisfying assignments
that we found through SLS, which provide geometric insight into the problem.
Based on those realizations, in Section 5 we propose and study two simple con-
structions providing a common upper bound of µ5(n) ≤

(⌊n/2⌋
5

)
+
(⌈n/2⌉

5

)
, which

we conjecture to be optimal. Section 6 shows that if the conjecture holds for
an odd value of n, then it will also hold for n + 1. Section 7 discusses the
verification of the conjecture for n ≤ 16 through MaxSAT, and finally, Sec-
tion 8 discusses the impact of the newly found values of µ5(n) for bound-
ing c5 and offers a series of related open problems. Our code is available at
https://github.com/bsubercaseaux/minimize-5gons.

2 Background

A set of points S = {p1, . . . , pn} in the plane (i.e., pi = (xi, yi) ∈ R2) is in gen-
eral position when no subset of three points of S belong to a common straight
line. Given an integer value n, we aim to find a set S of n points in general
position that minimizes the number of convex 5-gons with vertices in S. In order
to address this problem computationally one needs to shift from the continuous
space R2 to a discrete and finitely-representable abstraction. The crucial obser-
vation to achieve this is that the number of convex pentagons on a set of points
does not depend on their exact positions (e.g., it is invariant under scaling or
rotations) but rather on the relationship between them.

This is illustrated in Figures 1a and 1b; each of them depicts a pair of pen-
tagons that differ with respect to the exact position of their vertices but are equiv-

https://github.com/bsubercaseaux/minimize-5gons
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(a) A pair of convex pentagons that are equivalent with respect to their signotopes.
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(b) A pair of non-convex pentagons that are equivalent with respect to their signotopes.

Fig. 1: Illustration of the signotope abstraction.

alent in terms of the relationships between vertices, in a sense that we make pre-
cise next. As it is standard in the area, we abstract a set of points S according to
the relative orientation of each of its subsets of three points [34,42,43,48]. We as-
sume without loss of generality that the points are labeled from left to right, that
is, for every triple pa, pb, pc ∈ S, with a < b < c, we assume xa < xb < xc [48].
Then, for every triple a < b < c we define its signotope σ(a, b, c) as true if
pa, pb, pc appear in counterclockwise order, and false otherwise. Formally,

σ(a, b, c) =

{
true if (yc − ya)(xb − xa) > (xc − xa)(yb − ya),

false otherwise.

Importantly, not every combination of signotopes is consistent with the left-
to-right labeling we assume. For a minimal example, consider points pa, pb, pc, pd,
with a < b < c < d, such that pa, pb, pc appear in clockwise order, and pb, pc, pd
also appear in clockwise order. Then, necessarily, pa, pc, pd must appear in clock-
wise order as well, which translates to the implication ¬σ(a, b, c)∧¬σ(b, c, d) =⇒
¬σ(a, c, d). More in general, the following signotope axioms apply to any set of
points in general position, provided that the points are sorted with respect to
their x-coordinates [21,48]:(

σ(a, b, c) ∨ ¬σ(a, b, d) ∨ σ(a, c, d)
)
∧
(
¬σ(a, b, c) ∨ σ(a, b, d) ∨ ¬σ(a, c, d)

)
(1)(

σ(a, b, c) ∨ ¬σ(a, c, d) ∨ σ(b, c, d)
)
∧
(
¬σ(a, b, c) ∨ σ(a, c, d) ∨ ¬σ(b, c, d)

)
(2)(

σ(a, b, c) ∨ ¬σ(a, b, d) ∨ σ(b, c, d)
)
∧
(
¬σ(a, b, c) ∨ σ(a, b, d) ∨ ¬σ(b, c, d)

)
(3)(

σ(a, b, d) ∨ ¬σ(a, c, d) ∨ σ(b, c, d)
)
∧
(
¬σ(a, b, d) ∨ σ(a, c, d) ∨ ¬σ(b, c, d)

)
(4)
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Fig. 2: The convex 5-gon cases based on the position of b, c, d w.r.t. the line ae.

Even though every set of points in the plane respects these axioms when labeled
from left to right, the converse is not true. In other words, there are signotope
assignments respecting these axioms that do not correspond to any set of points
in the plane; these are said to be non-realizable. Deciding whether a set of sig-
notopes is realizable is a well-known hard problem in computational geometry,
complete for the class ∃R, and will be discussed further in Section 4.

3 Encoding and Stochastic Local Search

We will use the signotopes σ(a, b, c) directly as propositional variables in our
encoding. As a first step, we directly add the O(n4) axiom clauses of Equa-
tions (1)-(4). Then, in order to minimize the number of induced convex 5-gons,
we use an idea of Szekeres and Peters [48]. Szekeres and Peters identified the
four cases that form a convex 5-gon, depending on where the three middle points
b, c, and d are located with respect to the line through the leftmost point a and
the rightmost point e:

Case I: σ(a, b, c) = σ(b, c, d) = σ(c, d, e)

Case II: σ(a, b, c) = σ(b, c, e) = ¬σ(a, d, e)
Case III: σ(a, b, d) = σ(b, d, e) = ¬σ(a, c, e)
Case IV: σ(a, b, e) = ¬σ(a, c, d) = ¬σ(c, d, e).

The four cases are illustrated in Figure 2, showcasing that each case has
two possible orientations depending on the value of the signotopes that the case
asserts to be equal. Given that we will first use Stochastic Local Search (SLS),
it is important to recall that an SLS solver attempts to find an assignment
that minimizes the number of falsified clauses in its input formula, without
any guarantee of optimality except for when a fully satisfying assignment is
found. Therefore, as we want to find assignments to the signotope variables that
minimize the number of convex 5-gons, we desire an encoding where each convex
5-gon falsifies exactly one clause. We achieve this by adding the following clauses,
based on the disjoint cases I-IV, for every sorted tuple of five points (a, b, c, d, e):
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σ(a, b, c) ∨ σ(b, c, d) ∨ σ(c, d, e) (5)
¬σ(a, b, c) ∨¬σ(b, c, d) ∨¬σ(c, d, e) (6)
σ(a, b, c) ∨ σ(b, c, e) ∨¬σ(a, d, e) (7)

¬σ(a, b, c) ∨¬σ(b, c, e) ∨ σ(a, d, e) (8)
σ(a, b, d) ∨ σ(b, d, e) ∨¬σ(a, c, e) (9)

¬σ(a, b, d) ∨¬σ(b, d, e) ∨ σ(a, c, e) (10)
σ(a, b, e) ∨¬σ(a, c, d) ∨¬σ(c, d, e) (11)

¬σ(a, b, e) ∨ σ(a, c, d) ∨ σ(c, d, e). (12)

Note that the best assignments found through SLS might, in principle, violate
the signotope axiom clauses of Equations (1)-(4) in order to minimize the number
of falsified clauses. Interestingly, we tested for about a thousand best assignments
whether any axiom clauses were falsified and this was never the case. Therefore
the number of falsified clauses in all the best assignments found through SLS,
presented in Table 2, would constitute an upper bound on the minimum number
of convex 5-gons if they were realizable.

We also experimented with formulas without the signotope axiom clauses.
The best number of falsified clauses of these formulas match numbers on Table 2.
So potentially violating many axiom clauses does not result in fewer 5-gons. It is
therefore not surprising that none of the axiom clauses were falsified in the best
found assignments. However, the runtimes to obtain the best-known values were
substantially higher (roughly an order of magnitude) for the formulas without
the axiom clauses. So these clauses are helpful to reduce the runtime.

In terms of software, we tested all the algorithms in UBCSAT [49] and the
DDFW algorithm [33] turned out to have the best performance. We ran UBC-
SAT with its default settings, which means it restarts every 100 000 flips. For
some of the harder formulas this resulted in hundreds of restarts. An interesting
observation is that the optimal assignments are harder to find when n is even.
Observe that best number of falsified clauses matches exactly the conjectured
values, apart from n = 30 where the best found assignment after 12 hours is 1
above the conjectured value, suggesting that we reached the limit of SLS for this
problem.

4 Realizability

Deciding whether a signotope assignment can be realized by a set of points in
the plane is a hard combinatorial problem, complete for the complexity class
∃R, which satisfies NP ⊆ ∃R ⊆ PSPACE [44]. To the best of our knowledge,
no open-source tools for the realizability problem are publicly available. Because
of this, we present as a contribution of independent interest, a simple local
search approach to realizability, that has proved effective in this problem. We
use LocalSolver v12.0 [23], a local search engine that supports floating point
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Table 2: SLS results of formulas for µ5(n) showing the best number of falsified
clauses and the time, in seconds, to find that bound.

n 9 10 11 12 13 14 15 16 17 18 19 20

best 1 2 7 12 27 42 77 112 182 252 378 504
time [s] 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 2.03 0.94 174.11

n 21 22 23 24 25 26 27 28 29 30

best 714 924 1254 1584 2079 2574 3289 4004 5005 6007
time [s] 3.34 43.92 11.64 472.33 63.48 5268.1 1555.5 1791.9 467.36 18 244

variables and provides free academic licenses, in order to find realizations for
small numbers of points (n ≤ 16). Concretely, the problem at hand consists
of, given a (not necessarily consistent) assignment to the signotope variables
σ(a, b, c), . . ., find a set of points (xa, ya), (xb, yb), (xc, yc), . . . that satisfies them
all. We add one constraint per signotope variable, and furthermore maximize the
minimum distance between any pair of points, in order to regularize the obtained
realizations and avoid floating-point-arithmetic issues. Experimentally, we found
that if no constraint is placed on the distance between points, LocalSolver
tends towards solutions that place all points extremely close to each other, or in
a straight line, where the constraints will be satisfied only due to floating point
imprecision. Therefore, our model consists of:

maximize z

subject to z ≤
√
(xa − xb)2 + (ya − yb)2,

ε < σ⋆(a, b, c) · [(yc − ya)(xb − xa)− (xc − xa)(yb − ya)],

0 ≤ xa ≤ K,

0 ≤ ya ≤ K,

where σ⋆(a, b, c) = 1 if σ(a, b, c) and −1 otherwise. The parameters ε and K
are experimentally determined, and also contribute towards avoiding degener-
ate solutions due to floating point arithmetic. In particular, setting a value of ε
that is too close to 0 (say, ε = 10−10) allows for degenerate solutions that only
satisfy constraints due to floating-point-arithmetic quirks, whereas setting e.g.,
ε = 10−3 may result in an unfeasible set of constraints even if the signotope
assignment is realizable. By implementing this model in LocalSolver, we ob-
tained the realizations depicted in Figure 3a and Figure 3b. We remark that,
consistently with the asymptotic result stating that most signotope assignments
are not realizable [13,44], only about 5% of the 10 000 different assignments we
found through SLS for n ∈ {12, 14, 16} led to realizations (in under 100s).
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(a) A realization obtained for the prob-
lem instance µ5(12) = 12 that inspires
the pinwheel construction.
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(b) A different realization obtained for
the problem instance µ5(12) = 12 that
inspires the parabolic construction.

Fig. 3: Illustration of two different realizations obtained with LocalSolver. Both
realizations come from a single signotope orientation obtained through SLS un-
der different executions. Dashed lines are for illustrative purposes only, in order
to showcase the similarity with Figure 4a and Figure 4b.

5 Constructions

We present two different constructions achieving a common bound: (i) the pin-
wheel construction in Section 5.1, which generalizes the realization depicted
in Figure 3a, and (ii) the parabolic construction in Section 5.2, which gener-
alizes the realization depicted in Figure 3b.

5.1 The Pinwheel Construction

This construction, illustrated in Figure 4a requires the number of points n = 4k
to be a multiple of 4. It consists of four spokes defined as follows:

S1 = {(k + j,−j(k − j)/k3 + 1) | j ∈ {0, 1, . . . , k − 1}}
S2 = {(−(k + j), j(k − j)/k3 − 1) | j ∈ {0, 1, . . . , k − 1}}
S3 = {(j(k − j)/k3 − 1, k + j) | j ∈ {0, 1, . . . , k − 1}}
S4 = {(−j(k − j)/k3 + 1,−(k + j)) | j ∈ {0, 1, . . . , k − 1}}.

Proposition 1. The number of convex 5-gons obtained by applying the pinwheel
construction on n = 4k points is exactly 2

(
2k
5

)
.

Proof sketch, illustrated in Figure 5. The proof is by cases according to which
spokes contain the 5 points of an arbitrary pentagon. If all five points are con-
tained in the same spoke Si, then the pentagon is convex due to the curvature
of the spokes. If four points are contained in a spoke Si, then to make a convex
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(a) Illustration of the Pinwheel con-
struction for n = 48 points.

(b) Illustration of the Parabolic con-
struction for n = 32 points.

Fig. 4: Illustration of the constructions achieving the bound of Theorem 1.

5-gon the fifth point must be in the next spoke counterclockwise, S(i+1)%4. Sim-
ilarly, if a spoke contains 3 points, and the next spoke counterclockwise contains
the remaining 2 points, then the pentagon is convex. Finally, every other case
yields a non-convex 5-gon. As there are 4 ways of choosing the unique spoke
with the largest number of points in a convex 5-gon, this results in

4 ·
((

k

5

)
+

(
k

4

)
·
(
k

1

)
+

(
k

3

)
·
(
k

2

))
= 2

(
2k

5

)
,

where the equality follows by Vandermonde’s identity.

Proof sketch, illustrated in Figure 6. If we consider any set of five points that
are either fully contained in L⊤ :=

⋃
i p

⊤
i or fully contained in L⊥ :=

⋃
i p

⊥
i ,

then they must define a convex 5-gon, due to the convexity (resp. concavity) of
L⊤ (resp. L⊥). There are exactly

(⌈n/2⌉
5

)
+

(⌊n/2⌋
5

)
sets of 5 points that can be

chosen in this way. It remains to argue that any 5-gon P that intersects both
L⊤ and L⊥ cannot be convex. By the pigeonhole principle, there is one curve
from L ∈ {L⊥, L⊤} such that |L ∩ P | ≥ 3, and for this sketch we can assume
that L = L⊥ without loss of generality. There are now two cases, illustrated
in Figure 6: either |L⊥ ∩ P | = 3 or |L⊥ ∩ P | = 4, and both of them lead to
non-convex 5-gons due to the concavity of L⊥.

5.2 The Parabolic Construction

A direct generalization of Figure 3b consists on constructing, for any given n:

p⊤i =

(
i, 2 +

i2

n2

)
,∀i ∈

[⌊n
2

⌋]
and p⊥i =

(
i,−2− i2

n2

)
,∀i ∈

[⌈n
2

⌉]
.
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(f) Case 6: Three different spokes contain
points.

Fig. 5: Illustration for some of the cases in the proof sketch for the pinwheel
construction.
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gon.
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(b) Case 2: three points
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convex 5-gon.
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(c) Case 3: four points
on one curve and a single
point on the other never
make a convex 5-gon.

Fig. 6: Illustration of the proof sketch for the parabolic construction. Curvature
of L⊤ and L⊥ has been scaled for illustrative purposes.

An illustration of this construction is presented in Figure 4b. We remark that,
albeit having a different use, the parabolic construction seems to be equivalent
to the double chain idea in [6, 22], but whose application to this problem we
discovered thanks to the obtained realizations.

Proposition 2. The number of convex 5-gons obtained by applying the parabolic
construction on n points is exactly

(⌊n/2⌋
5

)
+
(⌈n/2⌉

5

)
.

As a direct consequence of the above constructions, we obtain the following
upper bound for µ5(n).

Theorem 1. Let µ5(n) denote the minimum number of convex pentagons when
n points are placed in the plane in general position. Then, µ5(n) satisfies the
inequality: µ5(n) ≤

(⌊n/2⌋
5

)
+
(⌈n/2⌉

5

)
.

Conjecture 1. The bounds of Theorem 1 are tight.

We remark that albeit the pinwheel construction can be deemed unnecessary
as Theorem 1 is already implied by the parabolic construction, we consider it an
interesting example of how the diversity of solutions to a MaxSAT problem can
translate to a diversity of constructions, or proofs, of a mathematical fact.

6 Odd-Even Implication

Another piece of evidence for Conjecture 1 is given by the following pen-and-
paper theorem: if the conjecture holds for 2n − 1 points, then it must hold for
2n points.
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Proposition 3. If for some n > 5 it holds that µ5(2n− 1) =
(
n
5

)
+
(
n−1
5

)
, then

µ5(2n) = 2
(
n
5

)
.

In order to prove this, we will generalize the following folklore idea [15, 41]:
µ5(n) ≥ n

n−5µ5(n− 1), for any n.

Lemma 1. Let m and r be values such that µk(m) ≥ r. Then for every n ≥ m
we have µk(n) ≥ r ·

(
n
m

)
/
(
n−k
m−k

)
= r ·

(
n
k

)
/
(
m
k

)
.

Proof sketch. For each of the
(
n
m

)
subsets of m points, we know there will be at

least r convex k-gons. However, this will count multiple times a fixed convex k-
gon that appears in many m-point subsets. In particular, each convex k-gon will
be counted

(
n−k
m−k

)
times this way, thus yielding the first inequality. The equality

comes simply from:(
n

m

)
/

(
n− k

m− k

)
=

n!

m! (n−m)!
· (m− k)! (n−m)!

(n− k)!

=
n!

(n− k)! k!
· (m− k)! k!

m!
=

(
n

k

)
/

(
m

k

)
.

Corollary 1. The limits ck := limn→∞ µk(n)/
(
n
k

)
are well defined.

Proof. Use Lemma 1 with m = n− 1 and r = µk(n− 1), to get

µk(n)/

(
n

k

)
≥ µk(n− 1)/

(
n− 1

k

)
,

which implies the sequence µk(n)/
(
n
k

)
is non-decreasing, and as it is clearly

bounded above by 1, we conclude.

Moreover, using Lemma 1 with k = 5, m = n− 1, and r = µk(n− 1) yields:

Corollary 2. For any n > 5, µ5(n) ≥ n
n−5 · µ5(n− 1).

We are now ready to prove Proposition 3.

Proof of Proposition 3. By using Theorem 1 we have µ5(2n) ≤ 2
(
n
5

)
. Now, to

argue that equality is achieved, we use Corollary 2 to obtain that

µ5(2n) ≥
2n

2n− 5
· µ5(2n− 1) =

2n

2n− 5

((
n

5

)
+

(
n− 1

5

))
=

(
n

5

)
+

5

2n− 5

(
n

5

)
+

2 · n! · (n− 5)

(2n− 5)(n− 5)! 5!

=

(
n

5

)
+

5

2n− 5

(
n

5

)
+

2(n− 5)

2n− 5

(
n

5

)
= 2

(
n

5

)
.

The two inequalities imply that µ5(2n) = 2
(
n
5

)
and conclude the proof.
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Table 3: Number of variables (#Vars), hard clauses (#Hard), soft clauses
(#Soft), and symmetry breaking clauses (#Symmetry).

Instance #Vars #Hard #Softs #Symmetry

µ5(9) 210 2 016 126 28
µ5(11) 627 6 336 462 45
µ5(13) 1 573 16 016 1 287 66
µ5(15) 3 458 34 944 3 003 91

7 MaxSAT Verification

The Stochastic Local Search presented in Section 3 gives us upper bounds on
the value of µ5(n) for specific values of n, on the condition that the associated
signotope assignments are realizable. Thanks to Theorem 1, obtained through
the constructions of Section 5, we know the upper bounds found through SLS
are indeed true upper bounds for µ5(n). However, it could be the case that
better bounds could be found since Stochastic Local Search does not provide
any guarantees of optimality. To further support our conjecture, we will use
Maximum Satisfiability (MaxSAT) [11] solvers to find the optimal value of µ5(n)
for some values of n. In particular, we show that µ5(9) = 1, µ5(11) = 7, µ5(13) =
27, and µ5(15) = 77. Concretely, as every set of points in the plane is captured
by the signotope abstraction, if no assignment of signotopes induces fewer than
m convex 5-gons for a given value of n, then indeed we conclude µ5(n) ≥ m.

7.1 MaxSAT Encoding

MaxSAT is an optimization variant of SAT, where, given an unsatisfiable for-
mula, the goal is to maximize the number of satisfied clauses. MaxSAT can be
extended to include two sets of clauses: hard and soft. An optimal assignment
for a MaxSAT problem satisfies all hard clauses while maximizing the number
of satisfied soft clauses. To build a MaxSAT encoding for this problem we first
introduce relaxation variables r(a, b, c, d, e) to denote whether the 5-gon with
vertices a, b, c, d, and e is convex and thus must be avoided. We then modify
clauses (5)-(12) by adding the literal r(a, b, c, d, e) to each of them.

The axiom clauses (1)-(4) in Section 2 and the modified clauses (5)-(12) are
defined as being hard. Finally we introduce the following soft clauses:∧

(a,b,c,d,e)∈S

(
¬r(a, b, c, d, e)

)
. (13)

The MaxSAT formulas for µ5(n) are modest in size for small n, with µ5(15)
featuring about 3 500 variables, 35 000 hard clauses, and 3 000 soft clauses. Ta-
ble 3 shows the size of the MaxSAT formula for µ5(n) (including symmetry-
breaking clauses described next in Section 7.1).
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Table 4: Experimental results without symmetry-breaking constraints:
Wall clock time in seconds to solve µ5(n) with a time limit of 18,000 seconds
(5 hours) per instance. A ‘−’ denotes a timeout was reached, and optimality
was not proven. For the cube-and-conquer approach (C&C), we also include in
parenthesis the sum of the CPU time needed to solve all disjoint formulas.

Solver µ5(9) µ5(11) µ5(13) µ5(15)

Se
qu

en
ti

al EvalMaxSAT 5.01 485.08 − −
MaxCDCL 0.02 35.28 − −
Pacose 0.02 99.69 − −
MaxHS 0.03 − − −

C
&

C

EvalMaxSAT 4.98 (39.40) 287.27 (3,728.45) − −
MaxCDCL 0.02 (0.14) 2.27 (19.42) 1,004.19 (18,133.54) −
Pacose 0.02 (0.14) 5.06 (61.11) − −
MaxHS 0.02 (0.17) − − −

Symmetry Breaking. Adding symmetry-breaking predicates that remove equiv-
alent solutions can prune the search space and improve the performance of SAT
solvers [18, 37] and is beneficial as well for MaxSAT solvers. For µ5(n), we can
break some symmetries by adding hard unit clauses σ(1, b, c) with b < c so that
only solutions where points appear in counterclockwise order with respect to
p1 are obtained. A proof of correctness for this symmetry breaking is presented
in [42, Lemma 1]. By comparing Tables 3 to 5, we observe that adding just a
few unit clauses to break symmetries has a significant impact on MaxSAT solver
performance. For instance, µ5(15) is unsolvable with any approach, compared to
a 32-minute solve time with MaxCDCL (see Table 5 in Section 7). For µ5(13),
MaxCDCL with cube-and-conquer and symmetry-breaking predicates solves it in
7.69 seconds, compared to over 1 000 seconds without symmetry breaking. This
effect is also seen with other solvers, highlighting the importance of symmetry
breaking in practical problem-solving.

MaxSAT Approaches. MaxSAT solvers employ various strategies for find-
ing optimal solutions. This paper explores four MaxSAT solvers (EvalMaxSAT,
MaxCDCL, Pacose, and MaxHS) that have excelled in the annual MaxSAT Evalu-
ations.1 EvalMaxSAT [9] uses an unsatisfiability-based algorithm, beginning with
a linear search from the lower bound to the optimal solution. The winning ver-
sion in the MaxSAT Evaluation 2023 used an integer linear programming (ILP)
solver as a preprocessing step but performed better without it in our evalua-
tion. MaxCDCL [36] combines clause learning with branch-and-bound and was
among the top-performing solvers in the MaxSAT Evaluation 2023. We used
the default version without ILP preprocessing. Pacose [39] performs a linear
search, iteratively improving the upper bound until it finds an optimal solution.
In our evaluation, we utilized the version from the MaxSAT Evaluation 2021.
MaxHS [17] employs an implicit hitting set approach, combining SAT and ILP
1 https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/
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solvers. It was the leading solver in the MaxSAT Evaluation 2021 and continues
to excel in solving MaxSAT problems.

Cube-and-conquer. We explore a strategy inspired by the cube-and-conquer
approach to parallelizing SAT formulas [30]. The key idea behind cube-and-
conquer is to split a formula into 2n disjoint formulas by carefully choosing
n variables and fixing their truth values to all possible 2n combinations. For
instance, consider Boolean variables x1 and x2 that belong to a formula φ. This
formula can be split into 4 disjoint formulas with the following construction φ1 =
φ∪(x1∧x2), φ2 = φ∪(¬x1∧x2), φ3 = φ∪(x1∧¬x2), and φ4 = φ∪(¬x1∧¬x2).
The intuition behind this idea is that it is easier to solve φi than φ and that
this approach can be used to create many disjoint formulas and enable massive
parallelism. In our evaluation, we selected the variables σ(3, 4, 5), σ(5, 6, 7), . . . ,
σ(n−2, n−1, n) (3 for µ5(9), 4 for µ5(11), 5 for µ5(13), and 6 for µ5(15)), because
we experimentally observed that these variables split the search into balanced
subspaces. Note that an optimal solution for φ corresponds to the best optimal
solution for all φi. Even though this is just a preliminary study on using the
cube-and-conquer approach to solve MaxSAT formulas, we show that even a few
variables can have a significant impact on allowing us to solve harder problems.

Finding Optimal Values for µ5(n). We run EvalMaxSAT, MaxCDCL, Pacose,
and MaxHS with the sequential and cube-and-conquer versions on the StarExec
cluster [45] −Intel(R) Xeon(R) CPU E5-2609 @ 2.40GHz−with a memory limit
of 32 GB. All experiments were run with a time limit of 5 hours (wall-clock time)
per benchmark (which is the largest time limit allowed by StarExec). Symmetry-
breaking predicates were applied to all formulas, as they are crucial for effective
problem-solving (cf. Tables 4 and 5). Table 5 shows that MaxSAT can be used
to prove the optimality of small values of n for µ5(n). Note that the best exact
values for µ5(n) prior to this work were up to µ5(11). By using MaxSAT we can
improve the best-known bounds for µ5(n) up to n = 16.2 Determining µ5(n) is
a challenging problem for current MaxSAT tools, and while all of the evaluated
tools could solve µ5(11), only MaxCDCL was able to solve µ5(13) using the
sequential version and µ5(15) with the cube-and-conquer approach. To the best
of our knowledge, this is the first example of how cube-and-conquer can improve
the performance of MaxSAT solvers. For instance, MaxHS can solve µ5(11) in
28.45, seconds while it would take 15 times more wall clock time to solve it
using the sequential approach. Even when considering the sum of CPU taken
by all disjoint formulas, it is still beneficial to use cube-and-conquer for most
cases. The cube-and-conquer approach can leverage having multiple machines
available on a cluster, such as StarExec, to improve the scalability of MaxSAT
tools, and allows EvalMaxSAT and Pacose to solve µ5(13) within the allocated
time budget. Furthermore, it improved the performance of MaxCDCL to solve
µ5(15) in approximately 32 minutes. These results encourage further exploration

2 While we have exact values only up to n = 15, the odd-even implication (see Sec-
tion 6) guarantees that the conjecture must also hold for n = 16.



16 Subercaseaux et al.

of a cube-and-conquer approach to solve other hard combinatorial problems
with MaxSAT, and open new research directions on how to automatically select
splitting variables for creating disjoint subformulas in the context of MaxSAT.

Table 5: Experimental results with symmetry-breaking constraints: Wall
clock time in seconds to solve µ5(n) with a time limit of 18 000 seconds (5
hours) per instance. A ‘−’ denotes a timeout was reached, and optimality was
not proven. For the cube-and-conquer approach (C&C), we also include in paren-
thesis the sum of the CPU time needed to solve all disjoint formulas.

Solver µ5(9) µ5(11) µ5(13) µ5(15)

Se
qu

en
ti

al EvalMaxSAT 3.39 237.59 − −
MaxCDCL 0.02 0.49 150.59 −
Pacose 0.03 1.93 − −
MaxHS 0.03 426.97 − −

C
&

C

EvalMaxSAT 0.92 (5.05) 96.65 (873.05) 825.11 (22 015.37) −
MaxCDCL 0.03 (0.46) 0.15 (1.46) 7.69 (140.88) 1 930.40 (66 333.04)
Pacose 0.03 (0.46) 0.19 (1.73) 136.70 (2 647.45) −
MaxHS 0.03 (0.44) 28.45 (93.32) − −

Certification of Results. Unlike SAT competitions, where SAT solvers pro-
vide proofs of unsatisfiability that can be independently verified, MaxSAT solvers
in the MaxSAT Evaluation do not offer proofs of optimality. Consequently, there
is a possibility of incorrect results. Recently, certain MaxSAT techniques [12,25,
52] have emerged, capable of generating verifiable proofs of optimality using
the verifier VeriPB [26]. We used the VeritasPBLib [25] framework to generate a
certified CNF formula that encodes the µ5(n) SAT problem with an additional
constraint that enforces the bound to be smaller than our conjectured best value.
This is similar to what Pacose does in the last step of its search algorithm when it
proves that the last solution found is optimal. We can feed the resulting formula
to a SAT solver and verify the unsatisfiability proof with VeriPB. This approach
can solve µ5(9) and µ5(11) and verify both results within a few seconds. Un-
fortunately, larger values of n are beyond the reach of this approach since this
construction (like Pacose) cannot solve µ5(13) within the 5-hour time limit.

8 Concluding Remarks and Future Work

We have proved the upper bound of Theorem 1 in two different ways by exhibit-
ing two different constructions, and verified through MaxSAT that this bound is
tight at least up to n = 16. Moreover, we have proven that the conjecture can-
not fail for the first time at an even number of points. Following the tradition of
Erdős, we offer a reward of $500 for the first person to prove or disprove Con-
jecture 1.
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On the Constant c5. Let us now discuss bounds on the constant c5 that our
work implies. First, we note that Theorem 1 provides an upper bound to c5 as
follows. We will use the equation limn→∞

(
n
k

)
/nk = 1

k! , which holds for any fixed
integer k > 0. Now, if we consider the subsequence of even numbers 2n, we have

c5 = lim
2n→∞

µ5(2n)(
2n
5

) ≤ lim
2n→∞

2
(
n
5

)(
2n
5

) = lim
2n→∞

2 · n5 · 5!
(2n)

5 · 5!
=

1

16
= 0.0625.

After we had written this article, it has come to our attention that this upper
bound appears in the work of Goaoc et al. [24], however, they do not provide
proof. Nonetheless, their work provides a strong lower bound of c5 ≥ 0.0608516.
Improving on this lower bound through SAT solving seems very challenging, as
we show next. We know that µ5(16) = 112, from where Lemma 1 yields that for
n > 16 we have

µ5(n) ≥ 112 ·
(
n
16

)(
n−5
11

) = 112 ·
(
n

5

)
/

(
16

5

)
=

112

4368
·
(
n

5

)
,

from where c5 ≥ 112
4368 ≈ 0.02564. Following the same method for n = 380 yields

c5 ≥ 0.060857. That is, improving on the bound of Goaoc et al. [24] would require
solving n = 380, which is currently out of reach.

Open Problems. We offer the following challenges:

1. ($500) Prove or disprove Conjecture 1.

2. Obtain and verify the value of µ5(17) and µ5(19). If those values also match
our conjectured bounds (182 and 378), this would contribute with an even
stronger piece of evidence for our conjecture; the first 6 odd values of n
would fit the degree 5 polynomial we proposed for odd n, meaning that if
µ5(2n + 1) were to be a fixed polynomial of degree 5, then it must be the
one we proposed.

3. Obtain concrete bounds and design constructions for µ6(·) and µ7(·). In
particular, we have checked that the parabolic construction is not optimal
for µ6(·), thus suggesting that new insights will be needed. We hope our
methodology based on realizations of SLS results can be helpful in this case
as well.

4. It is well known by now that symmetry breaking can provide dramatic perfor-
mance advantages for SAT-solving in combinatorial problems [18,37,46,47].
A natural question is whether the 4-fold symmetry of the pinwheel construc-
tion can be assumed without loss of generality, and if so, what would be an
efficient way of taking advantage of that fact. It is worth mentioning here
that the threefold symmetry of constructions for µ4(·) has been repeatedly
conjectured to achieve optimality [1], and yet remains unproven.
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