
Formal Methods in Computer-Aided Design 2022

Compact Symmetry Breaking for Tournaments
Evan Lohn , Chris Lambert, and Marijn J.H. Heule

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
elohn@andrew.cmu.edu, {chrislambert,marijn}@cmu.edu

Abstract—Isolators are a useful tool for reducing the compu-
tation needed to solve graph existence problems via SAT. We
extend techniques for creating isolators for undirected graphs to
the tournament (complete, directed) case, noting several parallels
in properties of isolators for the two classes. We further present
an algorithm for constructing n-vertex tournament isolators with
Θ(n logn) unit clauses. Finally, we show the utility of our new
isolators in computations of tournament Ramsey numbers.

Index Terms—Satisfiability, Symmetry-breaking, Directed-
graphs, Tournaments, Isolators.

I. INTRODUCTION

In recent years, SAT solvers have been used to solve sev-
eral difficult combinatorial problems [1]–[3]. However, naive
encodings of SAT problems often include undesired symme-
tries, i.e. certain matching subsets of variables that result in
equivalent subproblems when given equivalent assignments.
To prove the original formula unsatisfiable, in the worst case
a solver must search through all possible symmetric parts of
the problem space, which slows the generation of unsatisfiable
proofs unnecessarily. Similarly, while the solver tries to find
a satisfying assignment, symmetries in the input formula may
cause the solver to effectively re-explore the same part of the
search space even after proving the lack of a solution in a
symmetric part of the problem.

The most common way of reducing the impact of symme-
tries in a given formula is by adding a set of new clauses
called a Symmetry-Breaking Predicate (SBP) to the formula
before solving [4]–[6]. The goal of a SBP is to preserve the
satisfiability of the formula while removing from consideration
any regions of the search space known to be symmetric to other
regions. In this work we focus on SBP’s for graph existence
problems, which are problems that can be solved by checking
if a graph with a particular structure exists. Solving such
problems is an active area of research [7]–[9]. A large class
of problem symmetries in graph existence problems naturally
results from the existence of isomorphic labeled graphs. These
symmetries exist independent of any desired graph property
related to graph structure. Rather, they occur because SAT
solvers must search the space of labeled graphs in order to
prove the (non-)existence of an unlabeled graph. A SBP that
targets graph isomorphisms is known as an isolator. Isolators
that break many symmetries with few clauses are most useful
in practice, as SAT solvers generally take longer to solve
formulas with more clauses. Such isolators are often described
as “short”, “small”, or “compact.”

Prior work has shown that it is possible to generate small
isolators for undirected graphs [10]. The present work instead
handles the generation of short isolators for tournaments: com-
plete, directed graphs. There are several mathematically inter-
esting questions one can ask about tournaments that motivate
the generation of tournament isolators. For example, Sumner’s
conjecture and various election models in social choice theory
rely on tournament properties [11], [12]. Tournament isolators
can also aid in the search for doubly-regular tournaments.
Doubly-regular tournaments are a class of tournaments that
(among many other properties) can be efficiently transformed
to skew-symmetric Hadamard matrices [13], which have a
wide array of practical uses. However, the most well-known
question about tournament structure is the Tournament Ramsey
number problem, an analog to Ramsey numbers [14] that
asks the question of “in what size tournament n must a
transitive subtournament of size k exist.” A (sub)tournament is
transitive if it contains no cycles. Calculating the tournament
Ramsey number for k = 7 is likely the limit of currently
known techniques, and doing so would be impactful for the
mathematical community.

The first contribution of this work is the generation of
compact tournament isolators that asymptotically match the
search space reduction of a perfect isolator. Second, we present
a methodology for the generation of compact isolators for
small tournaments that extends prior work on undirected
tournaments [10]. Finally, we demonstrate the practical usage
of our small isolators for finding larger graphs relevant to the
search for tournament Ramsey numbers.

II. PRELIMINARIES

We define the following common concepts from SAT litera-
ture: A literal is either a variable or a negated variable. We use
¬ to denote negation. A clause is a disjunction of literals. A
unit clause (sometimes referred to as simply a unit) is a clause
containing exactly one literal. A Conjunctive Normal Form
(CNF) formula is a conjunction of clauses. Unless otherwise
specified, “formula” refers to “CNF formula.” An assignment
α is a function from variables to truth values (True/False). α
satisfies a formula F if the boolean function denoted by F
returns True given the inputs specified by α.

We also define several graph-theoretic concepts. A tourna-
ment G = (V,E) is a complete directed graph; more formally,
∀(v1, v2) ∈ V ×V, v1 ̸= v2 → ((v1, v2) ∈ E)⊕((v2, v1) ∈ E)
and ∀v ∈ V, (v, v) /∈ E, where ⊕ is the XOR operation. The
phrase “G is an n-vertex tournament” means |V | = n. Given

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-7843-6136
https://orcid.org/0000-0002-5587-8801
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

an n-vertex tournament G = (V,E) and a permutation π on V ,
π(G) is defined as π(G) = (V, {(π(v1), π(v2))|(v1, v2) ∈ E})
and is colloquially referred to as applying π to G. Two n-
vertex tournaments G1, G2 are isomorphic (written G1 ≃ G2)
exactly when there exists a permutation π on the vertices of G1

such that π(G1) = G2. When any such π exists, it is referred
to as an isomorphism between G1 and G2. The isomorphism
class (also, equivalence class) IG of a tournament G is defined
as IG = {G′|G ≃ G′}. An automorphism π on a tournament
G is any permutation π such that π(G) = G. The set of
automorphisms of G form a group under function composition.
This group is referred to as Aut(G).

III. ISOLATOR NOTATION AND CONCEPTS

To search for a tournament G satisfying some structural
property, we define variables with the semantics “edge e exists
in graph G” for use in a formula F . We say that F admits a
graph G′ exactly when there exists a satisfying assignment to
the conjunction of F and the set of unit clauses semantically
implied by the edges of G′. An isolator for n-vertex tourna-
ments is a formula F that admits at least one tournament from
each equivalence class on n-vertex tournaments. A perfect
isolator is an isolator that admits exactly one tournament from
each equivalence class. A perfect isolator F is optimal if
there does not exist a perfect isolator with fewer non-unit
clauses than F . A compact or short isolator is not rigorously
defined. Rather, it describes an isolator with few enough non-
unit clauses to be of practical use in solving SAT problems.

In this work, vertices will be denoted with lowercase letters
a, b, c, . . . or with v1, v2, . . . , vn when an ordering of the
vertices is relevant. Arcs (directed edges) will be referred to
with (u, v), meaning “there is an arc from u to v.” In our
construction of isolators, each variable is written in the form
uv and has the semantics “arc (u, v) exists in the graph.” Note
that the literal ¬uv therefore means “arc (v, u) exists in the
graph.”

A. Short Isolator Examples

Consider the following two labeled 3-vertex tournaments.

a

b

c a

b

c

These tournaments represent the only two equivalence
classes for n = 3 tournaments: a cycle and a transitive
tournament. While any combination of a cycle and transi-
tive tournament would suffice to represent both equivalence
classes, the tournaments chosen above have the interesting
property of sharing two edges ab and bc (colored red). This
property allows us to produce a short formula that admits both
graphs:

ab ∧ bc.

This formula admits exactly one of the two labeled cycles
and one of the six labeled transitive tournaments on 3 vertices,

a

b c

d a

b c

d a

b c

d a

b c

d

Fig. 1. All isomorphism class representatives admitted by a perfect, optimal
isolator for 4-vertex tournaments. Red edges are edges fixed by unit clauses
of the isolator, and the isolator has only unit clauses.

and does so with the fewest possible clauses. Therefore, ab∧bc
is a perfect, optimal isolator for n = 3 tournaments.

Figure 1 displays canonical representatives of all 4 isomor-
phism classes for n = 4 tournaments. We note that once again
all highlighted edges have the same edge labels across graphs,
and all permutations of non-highlighted edges are present. So,
a short formula that admits exactly the set of graphs in the
figure is

ab ∧ bc ∧ cd ∧ ad.

While the optimal isolators for n = 3, 4 are comprised
entirely of unit clauses, this pattern does not hold for n = 5.
Table I contains the number of unit and non-unit clauses for
our isolators on n ≤ 8 vertices.

B. Comparison of undirected graph and tournament isolators

Although the majority of this work focuses on tournament
isolators, there are many interesting parallels between undi-
rected and tournament isolators. In an undirected context, the
existence of edge (u, v) is denoted by the literal uv, while its
nonexistence is denoted by the literal’s negation ¬uv. Because
edgeless and complete graphs are isomorphism classes for any
n in the undirected case, every clause of an undirected graph
isolator containing only arc literals must contain at least one
positive and one negative literal. These two graphs do not exist
in the case of tournaments; the closest parallel is transitive
tournaments. Unlike the set of n-vertex undirected graphs
which contains exactly one empty graph and one complete
graph with n! automorphisms each, there are n! isomorphic
transitive tournaments on n vertices. It is possible to select
the particular transitive tournament TT that an isolator admits
by ensuring that at least one edge from TT is present in each
clause of the isolator. A simple way to do so is ensure each
clause contains at least one edge uv s.t. u < v in vertex
numbering.

One consequence of undirected isolators requiring at least
one positive and one negative literal per clause is that undi-
rected isolators have no unit clauses. However, while negating
all literals in an undirected isolator produces another undi-
rected isolator (because the existence and non-existence of an
edge is symmetric), there is no direct parallel to be found in
tournaments as edge directionality does not have this property.

Another interesting difference between undirected graphs
and tournaments is the low number of isomorphism classes
for tournaments when n is small (see table I). Intuitively,
this happens because it is “easier” for tournaments to be
isomorphic. The two options for the edge between vertices

u and v in the undirected case are uv existing or not existing.
Crucially, an undirected graph G will never be isomorphic to
G′ constructed by adding or removing an edge of G, which is
an operation that can be seen as “flipping” an edge to its other
possibility. However, “flipping” an edge of a tournament T by
changing the edge’s direction will produce T ′ ≃ T iff the two
vertices u and v of the flipped edge had the same edges to the
rest of the graph (the isomorphism is via the permutation that
swaps u and v). Although this discrepancy exists for small
n, the numbers of isomorphism classes for undirected graphs
and tournaments are remarkably close for larger n (see OEIS
A000088, A00056 [15]). Therefore, we expect that perfect,
optimal isolators for undirected graphs and tournaments will
have similar numbers of clauses for larger n.

C. Arc Literal Numbering

Each uv must be assigned a corresponding integer to
conform to the commonly used DIMACS CNF format. To do
so, we specify a function idxn(u, v) to map each possible arc
(u, v) in an n-vertex tournament to a unique integer identifier.
Because exactly one of (u, v) and (v, u) must exist for any
two vertices u, v, idx must satisfy idxn(u, v) = −idxn(v, u).
To facilitate isolator comparisons across different n, idx also
should satisfy the property that idxn(u, v) = idxn+1(u, v). We
therefore drop the subscript n when referring to idxn(u, v) in
the future, as its value does not depend on n.

In particular, idx is inductively defined as follows for
an n + 1-vertex tournament with vertices v1, v2, , ...vn, vn+1.
Let K = n(n − 1)/2 be the largest output of idx for
an n-vertex tournament (implying base case idx (v1, v2) =
1 when n = 2). Applying idx to each of the
arcs (v1, vn+1), (v2, vn+1), ...(vn, vn+1) yields K + 1,K +
2, ...,K + n, respectively. All arcs not included in this defini-
tion are of the form (vw, vu) where w > u, and are defined by
the earlier mentioned constraint of idx (u, v) = −idx (v, u).

IV. UNIT CLAUSES

In practice, SAT solvers immediately reduce formulas with
unit clauses to shorter formulas without units via unit prop-
agation. Additionally, each unit clause reduces the size of
the search space by a factor of 2. Therefore, it is practically
useful to create isolators with as many units as possible. The
following sections detail and analyze our various methods for
creating isolators with many unit clauses.

A. Provable Units

While constructing smaller isolators using the techniques
above, we opted to manually inspect our results and see what
patterns they shared. In doing so, we rediscovered a well-
known fact from graph theory literature; every tournament
contains a Hamiltonian path [16]. Proof sketch: inductively
consider a length n Hamiltonian path v1, v2, ...vn in an n+1-
vertex tournament G = (V,E). For the vertex vn+1 not part of
the path, in the case that either (vn+1, v1) or (vn, vn+1) is in
E, a length n + 1 Hamiltonian path is formed. Otherwise,
(v1, vn+1) and (vn+1, vn) are in E and thus there must

exist consecutive vertices vi, vi+1 in the Hamiltonian path
such that arcs (vi, vn+1) and (vn+1, vi+1) are in E. In this
case, the sequence v1, v2, ...vi, vn+1, vi+1, ...vn forms a length
n + 1 Hamiltonian path. As a result of this property, a set
of unit clauses describing a Hamiltonian path on an n-vertex
tournament is always a valid n-vertex isolator.

Given the utility of unit clauses in isolators, it is natural
to ask how many units there can possibly be in an n-vertex
isolator. As it turns out, there is a long-known result from
graph theory that implies that asymptotically there are at most
O(n log n) units possible. By the orbit-stabilizer theorem, the
size of the equivalence class of a graph G on n vertices is

n!
|Aut(G)| , where Aut(G) is the set of distinct automorphisms
of G. In 1963 Erdős and Rényi proved that as n approaches
infinity, the proportion of undirected graphs of size n with with
nontrivial automorphisms approaches 0 [17]. The same result
for tournaments directly follows. Therefore, a proportion of
tournaments approaching 1 has equivalence classes of size n!,
so the asymptotic number of equivalence classes is

2(
n
2)

n!
∈ Θ(

2(
n
2)

2n logn
) = Θ(2(

n
2)−n logn).

An isolator with k unit clauses for n-vertex graphs admits
at most 2(

n
2)−k equivalence class representatives, so in order

to admit at least one member of each equivalence class (by
the definition of an isolator), the number of units in an isolator
must also be asymptotically upper-bounded by n log n.

In the next section, we provide a procedure that achieves
this bound.

B. TT-fixing

In situations where we know that every member of the class
of n-vertex tournaments contains a TTk (a transitive tourna-
ment of size k), we also know that every equivalence class
must contain a member with the tournament fixed in some
arbitrary position and orientation (i.e. vertices 1 through k in
ascending order). Therefore, any formula that fixes (i.e. asserts
the existence of) a TTk on the class of n-vertex tournaments
is a valid isolator. Because the remaining subset of n − k
non-fixed vertices also forms a tournament, further knowledge
about the existence of a transitive tournament within the
remaining n−k vertices can be used to fix (via units) another
transitive tournament within the n− k vertex subtournament.
This procedure can be repeated until all vertices of the original
tournament are part of some fixed transitive subtournament.
Tournament Ramsey numbers provide exactly the required
information about the existence of a transitive subtournament.
In fact, tournament Ramsey numbers R(k) (when known)
provide the largest TTk guaranteed to exist in a tournament of
size at least R(k). Therefore, tournament Ramsey numbers (as
well as upper bounds, which exist for arbitrarily large n) can
be used to iteratively construct large sets of unit clauses for
tournament isolators: we will refer to this process as TT-fixing.

TT-fixing is best understood via a small example like figure
2. For an arbitrary 16-vertex tournament G, R(5) = 14 implies
that G must contain a TT5 as a subtournament. Therefore, the

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 2. A visual depiction of the unit clauses provided TT-fixing in the
adjacency matrix of an n = 16 tournament. For entries with value 1 at row i
and column j, the unit clause corresponding to (vi, vj) is added by TT-fixing.
Equivalently, the 1’s and 0’s shown will exist in the adjacency matrix of any
graph admitted by a TT-fixing isolator.

arcs between vertices v1...v5 can be “fixed” to be a transitive
tournament by generating all unit clauses corresponding to
those arcs. However, the remaining 16 − 5 = 11 vertices of
G also form an arbitrary subtournament G′ on 11 vertices.
Because R(4) = 8, a TT4 is guaranteed to exist in G′, so we
can add unit clauses corresponding to the specific location of
that TT4’s existence in vertices v6...v9. The repetition of this
procedure down to 1 or 0 remaining vertices is TT-fixing.

C. TT-fixing gives Θ(n log n) units

Let units(n) be the function that returns the number of
units that can be added to an isolator when using the TT-
fixing method on n-vertex tournaments. Our goal is to prove
a lower bound on units(n). Unfortunately, exact tournament
Ramsey numbers are non-trivial to calculate (only up to
R(6) = 28 is known). However, from Erdős and Moser we
have that R(k) ≤ 2k−1 [18], i.e. that a TTk must exist when
considering any tournament on 2k−1 or more vertices. Erdős
and Moser’s bound can thus be used with TT-fixing to lower-
bound units(n).

We claim that units(n) ≥
n∑︁

i=1

1
2⌊log2(i)⌋. We proceed via

induction, with step n depending on step n − k, with k =
⌊log2(n)⌋ + 1. The proposition is true for n = 1 because
0 ≥ 0, n = 2 because 1 ≥ 0.5. By definition of TT-fixing, for
a graph with n vertices we have

units(n) =
k(k − 1)

2
+ units(n− k). (1)

By the inductive hypothesis,

units(n− k) ≥
n−k∑︂
i=1

⌊log2(i)⌋/2. (2)

0 40 80 120 160 200
0

100

200

300

400

500

600

700

n [number of vertices]

nu
m

be
r

of
un

it
cl

au
se

s

units(n) and lower bound comparison (small n)

units possible(n)
units known(n)
units naive(n)
1
2

∑︁n
i=1 log2(i)

Fig. 3. A visual depiction of how the number of unit clauses produced by
TT-fixing grows under different assumptions about Ramsey numbers.

Next, we have that

k
k − 1

2
= k⌊log2(n)⌋/2

=

n∑︂
i=n−k+1

⌊log2(n)⌋/2

≥
n∑︂

i=n−k+1

⌊log2(i)⌋/2. (3)

Combining lower bounds (2) and (3) for the terms of eq. (1)
completes the proof:

units(n) =
k(k − 1)

2
+ units(n− k)

≥
n∑︂

i=n−k+1

⌊log2(i)⌋/2 +
n−k∑︂
i=1

⌊log2(i)⌋/2 (4)

=

n∑︂
i=1

⌊log2(i)⌋/2. (5)

This inequality result directly implies the asymptotic n log n
bound, because log2(n!) ∈ Θ(n log n).

D. Practical vs Theoretical TT-fixing units

We first note a useful recurrence relation on tournament
Ramsey numbers: R(k) ≤ 2R(k − 1).

Proof. Consider an arbitrary vertex v in an arbitrary tourna-
ment G on 2R(k − 1) vertices. v must have either an out-
degree or an in-degree of at least R(k − 1). In either case,
consider the subset of at least R(k− 1) vertices pointed to/at
by v. This subset must contain some TTk−1 as a subgraph by
definition of R(k− 1). However, v points to or at all vertices
in this TTk−1, which demonstrates that a TTk comprised of
the TTk−1 vertices and v exists in G.

In Figure 3 the bottom two lines depict the strict lower
bound used in the n log n units proof (blue), as well as the

3 6 9 12 15 18
0

25

50

75

100

125

150

175

n [number of vertices]

lo
g
2
(n

um
be

r
of

to
ur

na
m

en
ts

)

Effect of TT-fixing isolators on search space

All Labeled Graphs
After TT-fixing

Equivalence classes

Fig. 4. A depiction of the search space reduction provided by TT-fixing using
best-known Ramsey number bounds up to n = 18 in log2 space.

actual number of units TT-fixing would provide if we only
used the R(k) ≤ 2k−1 bound from the proof (red). Above
that (orange) is the number of units TT-fixing provides given
the best currently known Ramsey number bounds. The best
known bound on R(7) is 34 ≤ R(7) ≤ 47 [19], so the black
line describes the best case for how many unit clauses TT-
fixing could provide if R(7) = 34 was proven. The recurrence
relation R(k) ≤ 2R(k−1) is what allows even improvements
to small Ramsey number bounds to impact the efficacy of TT-
fixing for large n.

In Figure 4, the top (orange) line is the total number of
graphs a SAT solver must search in a tournament existence
problem in the absence of an isolator. The bottom (red) line
is the number of unlabeled tournaments on n vertices; this
is the minimum number of graphs that any brute-force solver
must search to solve a tournament existence problem. This
data was taken from OEIS sequence A000568 [15], which
limits the size of n for which we can make this comparison to
n = 19. The middle (blue) line shows how many graphs are
admitted by a TT-fixing isolator using the best known bounds
on tournament Ramsey numbers. As n grows large, the gap
between the bottom two lines should grow small as per the
n log n units upper bound proof.

E. Undirected Isolators: Clique-fixing

As mentioned earlier, undirected isolators cannot have unit
clauses. Therefore, undirected isolators cannot directly benefit
from units via TT-fixing. However, a crossover result for
undirected graphs does exist for binary clauses that uses the
same ideas as TT-fixing; we term this process clique-fixing.
Undirected Ramsey number guarantee the existence of a red
or blue colored k-clique for graphs with more than Ru(k)
vertices (Ru used here for undirected Ramsey numbers).
Clique-fixing uses the same iterative process as TT-fixing, but
generates the following clauses instead of TTk units:

{r ∨ e,¬r ∨ ¬e|e ∈ Edges(Kk)}

where r is an auxiliary variable representing the concept
“the k-clique is red” and Edges(Kk) is the set of edge literals
for the complete graph on k vertices. We note that these
clauses are “almost” units in the sense that after a solver
makes a decision about whether to set r to true or false,(︁
k
2

)︁
edges are set by unit propagation. Therefore, clique-

fixing steps reduce the search space by half as much as
TT-fixing steps do. Although not the focus of this work,
it is plausible that a similar asymptotic optimality analysis
could be done for clique-fixing given this small discrepancy.
However, undirected Ramsey numbers (necessary for clique-
fixing) empirically grow much faster than tournament Ramsey
numbers (and also theoretically: Ru(k) ≤ 4Ru(k − 1)), so
clique-fixing may not be as practically useful as TT-fixing.

V. PERFECT, OPTIMAL ISOLATOR SAT ENCODING

Unit-based techniques scale to arbitrary n, and TT-fixing
is “asymptotically perfect” in the sense that for large tour-
naments, no isolator generation technique can provide more
than a non-constant factor of search space reduction over TT-
fixing. However, no known perfect isolators for n > 4 consist
solely of unit clauses. Additionally, it can be practically useful
to have an optimal perfect isolator for small tournaments
to allow searching via SAT solver for only non-isomorphic
(sub-)graphs as efficiently as possible. The practical utility of
compact perfect isolators is demonstrated in our own exper-
iments in the later “Tournament Ramsey Graphs” section. In
the following sections, we describe our technique for creating
perfect, optimal isolators for n ≤ 6.

A. Basic SAT encoding

We re-implemented and modified the perfect isolator en-
coding for undirected graphs [10] to be used for tournaments.
Formally, we encoded the question “Is there a set of k
clauses C1, C2, ...Ck that is a perfect isolator for n-vertex
tournaments.” Decoding a solution to this formula allowed us
to produce an n-vertex isolator with k clauses.

For the ith isolator clause Ci and arc literal l, we defined the
variable In(Ci, l) to represent “l is in Ci”. Then, for each tour-
nament G on n vertices, we define variables Excludes(G,Ci)
for 1 ≤ i ≤ k to mean “clause Ci does not admit G.”
This specification is implemented as follows with a Tseitin
encoding [20] to handle the equality and conjunctions:

Excludes(G,Ci) ↔
⋀︂

l∈AG

¬In(Ci, l). (6)

Here AG is the set of arc literals corresponding to the arcs
present in graph G. We also define the variable Canon(G)
for all graphs G, meaning “Graph G is the canonical repre-
sentative of its isomorphism class IG.” We implement this as
follows (again using Tseitin):

Canon(G) ↔
k⋀︂

i=1

¬Excludes(G,Ci). (7)

Finally, for each isomorphism class I , we add the following
clauses representing “exactly one graph in I is canonical” to
the formula for each isomorphism class I:

ExactlyOne({Canon(G)|G ∈ I}) (8)

Here ExactlyOne is implemented with an At Most One
operation via Sinz encoding [21] and an At Least One via
disjunction. Therefore, a satisfying assignment to this formula
corresponds to a perfect isolator on k clauses. If the formula
is unsatisfiable for k and satisfiable for k+1, then the perfect
isolator with k + 1 clauses is optimal for the n in question.

B. Symmetry Breaking
One symmetry in the above encoding is the order of the

isolator clauses, as reordering clauses of an expression in
CNF does not affect its satisfying assignments. To break
this symmetry, we added clauses that ensured a lexicographic
ordering of the clauses in the resulting isolator. For every
adjacent pair of clauses Ci and Ci+1, we fixed some ordering
of every literal that may appear in them l1, l2, . . . , ln, and
then created variables e0, e1, . . . , en where ej represents that
clauses Ci and Ci+1 are equivalent when considering only the
first j literals. e0 is always true, and to maintain the semantics
of the other ej we added the clauses

ej ↔ (ej−1 ∧ (In(Ci, lj) ↔ In(Ci+1, lj)))

via the Tseitin transformation for every 1 ≤ i < k and 1 ≤ j ≤
n. Then, we enforced a lexicographic ordering by requiring
that for every j such that Ci and Ci+1 were equal up to j,
that if clause Ci contained lj then Ci+1 must also contain lj .
Explicitly, we added the following requirement via the Tseitin
transformation for every 1 ≤ i < k and 1 ≤ j ≤ n:

ej−1 ∧ In(Ci, lj) =⇒ In(Ci+1, lj)

and furthermore we required that en is false to ensure a strict
ordering. When searching for an isolator with k clauses, this
reduces the search space by a factor of k! as only one of
the k! permutations of a given distinct set of clauses will be
considered.

There is another symmetry in the vertex labeling. For a
given isolator, for each literal l corresponding to arc index Iab,
we can change l to correspond to arc index Iπ(a),π(b) where π
is a permutation of vertex labels. The resulting isolator accepts
the same graphs that the original did, but under vertex permu-
tation π. To break this symmetry, note that any tournament
isolator must admit exactly one transitive tournament. So, we
choose to admit only the canonical transitive graph with edges
of the form (vi, vj), i < j. Note that because every edge in
this graph goes from a lower numbered vertex to a higher
numbered vertex, the corresponding literals in our encoding
are all positive. As such, we know that for any isolator, there
is a permuted isolator such that every clause has at least one
positive literal in each clause. We may add this to our encoding
by requiring for all clauses C⋁︂

l∈Ap

In(C, l)

with Ap being the set of all positive literals. When trying to
find an isolator for n vertices, this reduces the search space by
a factor of n! since the solver is guaranteed to only consider
isolators for which the canonical transitive graph is the one
described above.

C. Encoding Unit Propagation

Under the encoding described above, our solver finds iso-
lators with many large clauses. However, by applying unit
propagation it was often possible to reduce clause sizes. This
indicated that not only was the solver generating solutions
that needed postprocessing, but candidate isolators that were
equivalent under unit propagation were being considered mul-
tiple times — a sort of symmetry in this problem. To resolve
this, we added variables Unit(l) representing “literal l is a
unit clause.” We then required that the isolator be already
unit-propagated with respect to these literals by adding the
requirement

¬In(C, l) ∨ ¬Unit(l)

for all clauses C and literals l. We also had to account for
these units excluding graphs in the Canon clauses, which were
updated to

Canon(G) ↔
k⋀︂

i=1

¬Excludes(G,Ci) ∧
⋁︂

l∈AG

¬Unit(¬l)

Finally, we considered whether to count these special unit
literals towards the clause count in determining isolator op-
timality. As mentioned in the preliminaries, we chose not to
do so. When an isolator with units is used in a SAT solver,
the units will be instantly eliminated through unit propagation
and thus will reduce the complexity of the resulting problem.
Therefore, we consider an optimal isolator to not just have
the minimal number of clauses, but the minimal number of
non-unit clauses. Since units cannot exist in undirected graph
isolators (because an undirected graph isolator must admit both
the complete and empty graph), this definition of optimality
is consistent with the prior work on the undirected case [10].
Note that we only needed to consider positive unit literals as
per the vertex-labeling symmetry breaking, which drastically
reduced the search space.

VI. ADDITIONAL ISOLATOR GENERATION TECHNIQUES

The following sections describe several miscellaneous tech-
niques, ranging from practical ways to gain slight improve-
ments on prior techniques to possible directions for future
research.

A. Incremental Isolators

Prior work has already shown that any isolator for n-vertex
tournaments is also an isolator for n+k-vertex tournaments for
any positive k, and that combining an isolator on m vertices
with an isolator on n vertices by applying each isolator to a
disjoint subset of vertices creates a new isolator on m + n
vertices [22]. Therefore, it is possible to construct perfect
isolators for n + k-vertex tournaments by adding clauses to

any isolator for n-vertex tournaments. In particular, our SAT
encoding pipeline had the option to ignore graphs that are not
admitted by a given set of units. Including the maximal set of
units from an n-vertex isolator when generating an encoding
for n+ 1-vertex isolators reduces the number of tournaments
to generate Canon clauses for by a factor of at least 2n

because each isolator has at least the units corresponding
to a Hamiltonian path. It is worth noting that we do not
have any proofs that any of our non-perfect or non-optimal
isolators can be extended to an optimal isolator, even when
the isolator being extended from is comprised of only unit
clauses. However, extending an isolator from an initial set of
units can make searching for compact isolators much more
efficient.

The technique of combining isolators is useful for creating
compact isolators for large n. Although TT-fixing guarantees
asymptotic optimality, it does not always add the optimal
number of units for small n. For example, TT-fixing will
generate 9 units when processing 8-vertex (sub)tournaments,
while an isolator for n = 8 with 11 units is possible.

B. Probing

In addition to the SAT encoding approach to isolator gen-
eration, we also generated isolators using a method from
prior work called “random probes” [10]. On a high level,
this approach starts with an empty set of clauses and adds
randomly generated clauses that preserve at least one member
of each equivalence class until the isolator is perfect. There
were only two non-superficial changes needed to adapt the
prior work on random probes for undirected graphs to the
directed case; allowing unit clauses and allowing clauses with
only positive literals. While not guaranteed to generate optimal
isolators, the strength of this approach is the relative speed
with which isolators are generated. This approach also bene-
fited in efficiency from the technique of disallowing clauses
with all negative literals and extending isolators from the unit
clauses of smaller isolators.

VII. RESULTS

Our experimental results include the sizes of known perfect
isolators for small n, as well as experiments showing the
practical utility of small n = 6, 7 perfect isolators for solving
a tournament existence problem. All results and code are
available at https://github.com/evanlohn/digraph isolators.

A. Experimental Setup

Our SAT-based approach to generating isolators rely on the
creation of “map” files: text files associating each tournament
of size n with a label representing that graph’s isomorphism
class. In order to generate a map file for tournaments on n
vertices, we began by enumerating all 2n(n−1)/2 graphs of size
n. We converted each graph into an adjacency matrix and then
into the “.d6” format specified in the NAUTY handbook, then
fed the resulting graphs into the labelg script bundled with the
NAUTY tool for graph isomorphisms [23]. labelg produced a
file where each graph was converted to the canonical form

used by nauty. We gave each canonical form a unique label
and outputted the arc (directed edge) indices of each original
graph alongside its canonical form.

B. Small Optimal Isolators

Our SAT encoding allowed us to compute optimal isolators
up to n = 6. The SAT solver CaDiCaL [24] solves the
two instances required to prove optimality (k = 6, 7 non-
unit clauses) within 24 hours. Figures 1 and 6 graphically
display optimal, perfect isolators for n = 4, 5 by displaying
a graph from each isomorphism class. Figure 5 presents the
same image for one of the 56 isomorphism classes for n = 6.
Most of the structure of these isolators can be seen from their
unit clauses, which are depicted via red edges in the figures.

a

b c

d

ef

Fig. 5. One of the 56 isomorphism class representatives admitted by a
particular isolator for 6-vertex tournaments. Red edges are edges fixed by
unit clauses of the isolator.

For n = 7, solving the SAT instance directly became clearly
infeasible (taking several days without any signs of progress).
However, random probing allowed us to find a perfect isolator
for n = 7, 8. Each probe ran in around 10 seconds when
restricted to force a positive literal in each clause with the
map file reduced by the unit clauses from the next largest
isolator. Table I describes the best (fewest non-unit clauses)
isolator found for 1 ≤ n ≤ 8. Several thousand probes were
required to find our best known isolator for n = 7, while 2
probes were used to find our n = 8 isolator (each n = 8 probe
required about 2 days to finish). We note that n = 8 isolators
can have up to 11 unit clauses; the n = 8 isolator in Table I
was the shortest perfect isolator we generated via probing.

TABLE I
SHORTEST PERFECT ISOLATORS FOUND FOR n ≤ 8

Vertices Isomorphism classes Best units Best non-units
1 1 0 0
2 1 1 0
3 2 2 0
4 4 4 0
5 12 6 2
6 56 8 6
7 456 9 47
8 6880 10 665

C. Tournament Ramsey Graphs

The known tournament Ramsey numbers are R(2) = 2,
R(3) = 4, R(4) = 8, R(5) = 14, and R(6) = 28 [25]. Note
that in most cases, the next number is two times it predecessor.
Recently, the lower and upper bounds for R(7) have been

https://github.com/evanlohn/digraph_isolators

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

Fig. 6. All isomorphism class representatives admitted by a particular isolator
for 5-vertex tournaments. Red edges are edges fixed by unit clauses of the
isolator. The two non-unit clauses in the isolator are ac ∨ ¬bd ∨ ce and
ac ∨ ae ∨ ¬ce.

improved from 32 ≤ R(7) ≤ 54 to 34 ≤ R(7) ≤ 47 [19].
The improved lower bound is due to dozens of TT7-free
tournament on 33-vertices found using SAT.

McKay [26] extended this set of 33-vertex TT7-free tour-
naments to 5303 using the following method: generate all
29-vertex subtournaments of known 33-vertex TT7-free tour-
naments and extend them in all possible ways to 33-vertex
TT7-free tournaments. Repeat this procedure until no new 33-
vertex TT7-free tournaments are found. Also note that if a
tournament has no TTk, then its complement (reversing all
arcs) also doesn’t. This can be used to find additional TTk-
free graphs as well.

Looking for neighbors and complement graphs is a well-
known technique to compute more graphs with a certain
property. McKay and Radziszowski used it to compute all
known 42-vertex graphs that have no clique of size 5 nor
a co-clique of size 5 [27]. They conjecture that this method
generated all possible graphs of this type.

For all known Ramsey numbers R(k), there are unique
tournaments without a TTk of size R(k) − 1 and R(k) − 2.
Generalizing this property, if for some n there exists a k
with a unique TTk-free tournament on n vertices, then that
graph is known as STn. For example, the unique TT6-free
tournaments on 26 and 27 vertices are referred to as ST 26

and ST 27 respectively.
Prior to our work, there were 5303 known TT7-free tour-

naments on 33 vertices, implying that R(7) ≥ 34. So, either
k = 7 breaks the pattern of existence of STn tournaments, or
R(7) > 34. We studied the 5303 33-vertex TT7-free tourna-
ments and found that they all have ST 26 as a subtournament.
Moreover, 4952 of them have ST 27 as a subtournament.

It is the case that any TT7-free tournament on 34 vertices
contains at least 1 (up to isomorphism) TT7-free subtourna-
ment on 33 vertices. Therefore, enumerating further TT7-free
tournaments on 33 vertices is a step towards either finding
a TT7-free 34-vertex tournament or proving that no such
tournament exists. With this motivation, we explored whether
the suite of 5303 was complete or whether there are any other
33-vertex TT7-free tournaments. Our main experimental setup
involved finding new members containing ST 26 but not ST 27

by solving a CNF formula with a SAT solver, which uses our
isolator on 7 vertices. The formula can be described as the
union of the following sets of clauses:

1)
(︁
26
2

)︁
= 325 unit clauses requiring that ST 26 be present

in vertices v1 through v26;
2) The perfect isolator for n = 7 on the seven remaining

vertices v27 through v33;
3) A clause blocking each of the 5303 known solutions for

each vertex permutation that caused the solution to have
ST 26 in vertices v1 through v26 and a graph admitted
by the n = 7 isolator in vertices v27 through v33; and

4) clauses enforcing the “no TT7” condition from [19].
While this formula does not disallow all ST 27s (i.e. a

solution might include an extension from ST 26 that was not
present in the original solution set), it disallows all currently
known extensions, including the most common by far 1-
vertex extension from ST 26 to ST 27. Additionally, the n = 7
perfect isolator plays a crucial role for finding new solutions
in that without it, the SAT solver could find any tournament
equivalent to one of the previously known 33-vertex TT7-free
tournaments except for some non-automorphic permutation of
the last 7 vertices (which would thus be isomorphic to the
previously known solution). All solutions to our formula are
non-isomorphic to the original 5303 tournaments.

On the Pittsburgh Supercomputing Center [28], we ran 640
shuffled (clause permuted) versions of the above formula on
640 cores for 6 hours using the Kissat solver [29]. We found
three different satisfying assignments. These three solutions
represented a single new 33-vertex TT7-free tournament,
which is shown in Figure 7. This tournament is special as it is
self-complementary: reversing all arcs result in an isomorphic
graph. Only a small fraction of tournaments has this self-
complementary property [30]. Note that all STn graphs have
this property by definition. After finding this new tournament,
we updated the formula to include the blocking clauses for the
new tournaments and its isomorphisms. Kissat did not produce
further solutions when using 640 shuffled (clause permuted)
version of the updated formula on 640 cores in a day, so it is
possible that the formula is simply unsatisfiable.

⎡⎢⎢⎢⎣

0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1
0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0
1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1
1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0
0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0
0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0
1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1
0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0
0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0
1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0
0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0
1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0
1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1
1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0
1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0
0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1
1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 1 1
1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1
0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1
0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1
1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦
Fig. 7. The new 33-vertex TT7-free tournament found using our perfect isolator for n = 7. The upper-left section of the matrix is ST26, while the
bottom-right section is a graph admitted by our n = 7 isolator.

VIII. CONCLUSIONS

Our techniques allow the generation of isolators with
asymptotically optimal numbers of unit clauses, as well as
perfect, optimal isolators for n ≤ 6 and compact isolators for
n = 7, 8 found by random probing. We further demonstrate
how small isolators can be effectively used in the search for
much larger graphs relevant to tournament existence problems.
Future work using our results may lead to further improve-
ments on bounds for the tournament Ramsey number problem.

ACKNOWLEDGEMENTS

This work was partially supported by the Hoskinson Center
for Formal Mathematics and the National Science Foundation
under grant CCF-2015445. We thank Jeremy Avigad for his
comments on earlier drafts and John Mackey for his advice
on the graph theoretical parts of the paper.

REFERENCES

[1] J. Brakensiek, M. Heule, J. Mackey, and D. Narváez, “The resolu-
tion of Keller’s conjecture,” in Automated Reasoning, N. Peltier and
V. Sofronie-Stokkermans, Eds. Cham: Springer International Publish-
ing, 2020, pp. 48–65.

[2] M. J. H. Heule, “Schur number five,” in AAAI, 2018.
[3] M. J. H. Heule, O. Kullmann, and V. W. Marek, “Solving and verifying

the boolean pythagorean triples problem via cube-and-conquer,” in The-
ory and Applications of Satisfiability Testing – SAT 2016, N. Creignou
and D. Le Berre, Eds. Cham: Springer International Publishing, 2016,
pp. 228–245.

[4] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy, “Symmetry-
breaking predicates for search problems,” in Proceedings of the Fifth
International Conference on Principles of Knowledge Representation
and Reasoning, ser. KR’96. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996, p. 148–159.

[5] I. Shlyakhter, “Generating effective symmetry-breaking predicates for
search problems,” Discrete Applied Mathematics, vol. 155, pp. 1539–
1548, 06 2007.

[6] W. Wang, M. Usman, A. Almaawi, K. Wang, K. S. Meel, and S. Khur-
shid, “A study of symmetry breaking predicates and model counting,”

in Tools and Algorithms for the Construction and Analysis of Systems,
A. Biere and D. Parker, Eds. Cham: Springer International Publishing,
2020, pp. 115–134.

[7] T. Blankenship, J. Cummings, and V. Taranchuk, “A new lower bound
for van der Waerden numbers,” European Journal of Combinatorics,
vol. 69, pp. 163–168, 2018.

[8] M. Codish, M. Frank, A. Itzhakov, and A. Miller, “Computing the
Ramsey number R(4,3,3) using abstraction and symmetry breaking,”
Constraints, vol. 21, no. 3, p. 375–393, jul 2016.

[9] N. Komarov and J. Mackey, “On the number of 5-cycles in a tourna-
ment,” Journal of Graph Theory, vol. 86, 2017.

[10] M. J. Heule, “Optimal symmetry breaking for graph problems,” Math-
ematics in Computer Science, vol. 13, no. 4, pp. 533–548, 2019.

[11] D. Kühn, R. Mycroft, and D. Osthus, “A proof of Sumner’s universal
tournament conjecture for large tournaments,” Proceedings of the Lon-
don Mathematical Society, vol. 102, no. 4, pp. 731–766, 2011.

[12] W. Suksompong, “Tournaments in computational social choice: Recent
developments,” in Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, Z.-H. Zhou, Ed. Interna-
tional Joint Conferences on Artificial Intelligence Organization, 8 2021,
pp. 4611–4618, survey Track.

[13] A. Hanaki, “Skew-symmetric hadamard matrices and association
schemes,” SUT Journal of Mathematics, vol. 36, 06 2000.

[14] S. P. Radziszowski, “Small Ramsey numbers,” Electronic Journal of
Combinatorics, vol. 1000, 2011.

[15] N. J. A. Sloane and T. O. F. Inc., “The on-line encyclopedia of integer
sequences,” 2020. [Online]. Available: http://oeis.org/

[16] J. W. Moon, Topics on Tournaments. Holt, Rinehart and Winston, 1968,
p. 28.

[17] P. L. Erdős and A. Rényi, “Asymmetric graphs,” Acta Mathematica
Academiae Scientiarum Hungarica, vol. 14, pp. 295–315, 1963.

[18] P. Erdős and L. Moser, “On the representation of directed graphs as
unions of orderings,” in Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, vol. 9, 1964, pp. 125–132.

[19] D. Neiman, J. Mackey, and M. Heule, “Tighter bounds on directed
Ramsey number R(7),” arXiv preprint arXiv:2011.00683, 2020.

[20] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of reasoning. Springer, 1983, pp. 466–483.

[21] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in International conference on principles and practice of
constraint programming. Springer, 2005, pp. 827–831.

[22] M. Codish, A. Miller, P. Prosser, and P. Stuckey, “Breaking symmetries
in graph representation,” in International Joint Conference on Artificial
Intelligence, 08 2013, pp. 510–516.

[23] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal
of symbolic computation, vol. 60, pp. 94–112, 2014.

[24] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[25] A. Sanchez-Flores, “On tournaments free of large transitive subtourna-
ments,” Graphs and Combinatorics, vol. 14, no. 2, pp. 181–200, 1998.

[26] B. McKay, “Digraphs,” http://users.cecs.anu.edu.au/∼bdm/data/
digraphs.html, accessed: 2022-05-10.

[27] B. D. McKay and S. P. Radziszowski, “Subgraph counting identities and
ramsey numbers,” Journal of Combinatorial Theory, Series B, vol. 69,
no. 2, pp. 193–209, 1997.

[28] S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek, and
N. A. Nystrom, Bridges-2: A Platform for Rapidly-Evolving and Data
Intensive Research. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 1–4.

[29] A. Biere, M. Fleury, and M. Heisinger, “Cadical, kissat, paracooba
entering the sat competition 2021,” 2021.

[30] W. J. R. Eplett, “Self-converse tournaments,” Canadian Mathematical
Bulletin, vol. 22, no. 1, pp. 23–27, 1979.

http://oeis.org/
http://users.cecs.anu.edu.au/~bdm/data/digraphs.html
http://users.cecs.anu.edu.au/~bdm/data/digraphs.html

	Introduction
	Preliminaries
	Isolator Notation and Concepts
	Short Isolator Examples
	Comparison of undirected graph and tournament isolators
	Arc Literal Numbering

	Unit Clauses
	Provable Units
	TT-fixing
	TT-fixing gives Θ(nlogn) units
	Practical vs Theoretical TT-fixing units
	Undirected Isolators: Clique-fixing

	Perfect, Optimal Isolator SAT encoding
	Basic SAT encoding
	Symmetry Breaking
	Encoding Unit Propagation

	Additional Isolator Generation Techniques
	Incremental Isolators
	Probing

	Results
	Experimental Setup
	Small Optimal Isolators
	Tournament Ramsey Graphs

	Conclusions
	References

