
Journal on Satisfiability, Boolean Modeling and Computation 7 (2011) 133-138

Reusing the Assignment Trail in CDCL Solvers

system description

Peter van der Tak peter@vdtak.eu

Antonio Ramos ramosmaurer@hotmail.com

Department of Software Technology

Delft University of Technology, Delft

The Netherlands

Marijn Heule∗ marijn@heule.nl

Institute for Formal Models and Verification

Johannes Kepler University, Linz

Austria

Abstract

We present the solver RestartSATwhich includes a novel technique to reduce the cost to
perform a restart in CDCL SAT solvers. This technique, called ReusedTrail, exploits the
observation that CDCL solvers often reassign the same variables to the same truth values
after a restart. It computes a partial restart level for which it is guaranteed that all variables
below this level will be reassigned after a full restart. RestartSAT, an extended version
of MiniSAT, incorporates ReusedTrail – which can be implemented easily in almost any
CDCL solver. On average, it saves over a third of the decisions and propagations necessary
to solve a problem using a Luby restart policy with unit run 1. Experimental results show
that RestartSAT solves over a dozen more application instances than the default MiniSAT.

Keywords: CDCL solver, restart strategy

Submitted April 2011; revised September 2011; published November 2011

1. Introduction

Restart strategies [2, 4, 9] have been a crucial feature in conflict-driven clause learning
(CDCL) solvers [5] to tackle hard industrial problems. CDCL solvers select decision vari-
ables based on their involvement in emerged conflicts [6]. In case of frequent restarts [3, 8],
only a few new conflicts have been hit between two succeeding restarts. As a consequence,
CDCL solvers tend to select the same variables in a similar order after the restart. Ad-
ditionally, phase-saving [7] ensures that decision variables are assigned to the same truth
value as the value they were assigned to before a restart. Due to these heuristics, CDCL
solvers effectively perform a partial restart with the computational cost of a full restart.

In this paper we present RestartSAT, a solver based on MiniSAT 2.2 [1] that implements
a novel technique which reduces the computational costs to perform a restart. When the
solver wants to restart, it determines the first level at which the heuristics may select a
different decision variable, after which it performs a partial restart by backtracking to this
level, rather than perform a more costly full restart. Experiments show that RestartSAT
solves more real-world SAT instances from the SAT 2009 application suite than MiniSAT 2.2.

∗ Supported by the Austrian Science Foundation (FWF) NFN Grant S11408-N23 (RiSE)

c©2011 Delft University of Technology and the authors.



P. van der Tak et al.

2. Reused Trail

In this section we present the ReusedTrail technique which is used to reduce the cost of
a restart in a CDCL solver. It exploits the observation that similar assignments are made
after succeeding restarts when restarting frequently.

First a short overview on how decisions are made in CDCL solvers. As long as there
are unit clauses in the formula, their remaining literals are forced to true. We refer to
variables that are forced to a certain value as implied variables. Assigning implied variables
results in two possible outcomes: 1) there are no unit clauses; 2) a conflict arises (i.e. all
literals of a clause are assigned to false). In case 1) the solver selects a decision variable

using a variable selection heuristic and assigns it to a truth value based on a value selection

heuristic. The most common variable selection heuristic in CDCL solvers is VSIDS [6]
which selects variables based on their involvement in recent conflicts. Most CDCL solvers
use phase-saving [7] to select the value. This heuristic assigns variables to their last forced
value. In case 2) the conflict is analyzed and a conflict clause is added to the formula.
Afterwards, the VSIDS heuristic is updated and variables are unassigned until the conflict
clause becomes unit. This process continues until either a satisfying assignment is found or
it learns the empty clause – a clause with no literals showing that there are no solutions.

A powerful technique in CDCL solvers is restarting [2]. This technique simply unassigns
all variables and continues the process above. CDCL solvers tend to restart more and more
frequently in recent years [8]. By combining VSIDS and phase-saving, the same variables
tend to be assigned to the same truth values. More detailed, variables that are assigned are
put on an assignment trail. Each decision variable starts a new decision level. Whereas a
normal backjump would backtrack only to the backjump level (BJL), a full restart removes
all variables from the trail and effectively backtracks to level 0, the restart level (RSL). Yet
after a restart the same assignments are often added back in a similar order.

Consider our running example in Fig. 1 showing a trail just before the solver is about to
restart. Notice that if the solver unassigns all variables on the trail (full restart), the above
process will perform some redundant operations: the variable with the highest VSIDS score
(x5) will be assigned first (as on the trail before restarting). The same holds for the second
decision (x2) and consequently for implied variable x11. Now the next decision would be x13.
Since it no longer matches the trail, the so-called MatchingTrail level (MTL) is two [8].
Consider the four variables with the highest scores (x5, x2, x13, x9) and observe that they
are also the first four decision variables. The last level at which the n highest scoring
decision variables are the n first decisions is called the PermutedTrail level (PTL) [8].
Performing a partial restart to MTL or PTL instead of performing a full restart reduces
the number of redundant operations.

The main observation that resulted in the development of RestartSAT is that even some
assignments after the PermutedTrail level are redundant. Let xnext be the unassigned
variable with the highest activity – in other words the next decision variable if no restart
would be performed. The key insight is that any assignment that is made before xnext after
a restart must also have been assigned before the restart. The ReusedTrail level (RTL)
is the highest level up to which all decision variables score higher than xnext in the VSIDS
order. This means that each of these would be part of the trail after a full restart.

134



Reusing the Assignment Trail in CDCL Solvers

trail x∗5=1 x∗2=0 x11=0 x∗9=0 x∗13=1 x4=0 x∗14=1 x8=1 x∗1=1 x∗6=1 x3=1

level 1 2 2 3 4 4 5 5 6 7 7

score 93.5 88.2 15.9 75.4 81.2 44.0 62.8 27.7 53.6 38.1 63.9

RSL MTL PTL RTL BJL

unassigned x7 x10 x12
score 51.9 38.6 44.1

next decision at the backjump level (BJL): x7 = 0 with VSIDS score 51.9

Figure 1. An example to illustrate the (partial) restart levels: restart level (RSL), Matching-

Trail level (MTL), PermutedTrail level (PTL), ReusedTrail level (RTL) and the backjump

level (BJL). Variables x∗
i

are decision variables. The others are implied variables.

Back to the example. The first six decision variables have a higher VSIDS score than
xnext = x7. Therefore they will be reassigned before x7 after a full restart. Reusing the
trail by performing a partial restart to level 6 avoids redundantly assigning these variables
to the same truth values. Note that when x7 will be assigned – that is, after performing a
partial restart and reassigning x3 = 1 – the trail contains the same assignments as it would
when x7 is assigned after a full restart, albeit in a different order.

Observe that the (partial) restart levels are clearly ordered, which is also shown in the
example: 0 = RSL ≤ MTL ≤ PTL ≤ RTL ≤ BJL. Fig. 2 shows the number of times each
level was found as a value for MTL, PTL, RTL, and BJL when performing a restart. MTL
is often close to RSL (level 0), as indicated by the spikes at the left side of the graph. In
general PTL and RTL perform much better than MTL, and especially RTL is often close to
BJL, which suggests that most of the work that is performed after a restart is redundant.

fr
eq
u
en

cy

partial restart level

1

10

100

1000

0 50 100 150 200

backjump level
ReusedTrail level

PermutedTrail level
MatchingTrail level

Figure 2. Histogram of the MatchingTrail, PermutedTrail, ReusedTrail and back-

jump levels while solving ACG-15-10p1.cnf of the SAT 2009 competition with Luby-1.

135



P. van der Tak et al.

ReusedTrail (OrderHeap, Activity, DecisionVar)
1 forever do

2 if OrderHeap.empty() then return BackjumpLevel
3 v ← OrderHeap.remove()
4 if AssignmentType[xnext] = Unassigned then break

5 OrderHeap.insert(xnext)
6 for i← 1 to BackjumpLevel
7 if Activity[DecisionVar[i]] < Activity[xnext] then return i− 1
8 return BackjumpLevel

Figure 3. Pseudo-code of the ReusedTrail algorithm.

ReusedTrail not only returns a higher partial restart level compared to Matching-

Trail and PermutedTrail, it is also cheaper to compute. While both other algorithms
require to loop over decision variables as well as implied variables [8], computing Reused-

Trail only requires a loop over the decision variables (and only over those that are saved).
Since the number of implied variables is in general an order of magnitude larger than the
number of decision variables, this results in a big speedup. In practice, ReusedTrail is
efficient, and profiling suggests that it takes less than 1% of the total solving time.

The pseudocode for ReusedTrail is listed in Fig. 3. It requires efficient access to the
heap that stores the VSIDS order (OrderHeap) the VSIDS score of each variable (Activity[x]),
and the sequence of decision variables (DecisionVar[i]) where x is a variable and i is the in-
dex of a decision level. In lines 1 through 5, it determines xnext, and reinserts it into the
heap. Reinsertion is required so that all unassigned variables remain in the heap. Addition-
ally, MiniSAT occasionally tries to perform a restart even when a satisfying assignment is
found, resulting in an empty heap. In that case, we do not need to restart and return Back-
jumpLevel. Lines 6 and 7 iterate through the decision levels as described above, returning
the highest level for which the decision variable has an activity of at least that of xnext. If
all levels satisfy this criterion line 8 returns BackjumpLevel.

Although the reduction of the restart costs is the most important feature of Reused-

Trail, this technique also has an interesting side-effect. In CDCL solvers, each implied
variable has a reason clause that denotes the assignments that forced it. These influence
the construction of conflict clauses. A partial restart does not affect reason clauses, whereas
performing a full restart may change them. This could influence the path the solver takes
through the search space either positively or negatively. A thorough analysis of the changed
reason clauses requires more work, but the effect seems small. We forced reason clauses to
be the same for the solved instances using a Luby-1 restart sequence, and ReusedTrail

achieved a speedup of about 14% — similar to the result without forcing reason clauses. We
therefore conclude that this side-effect likely does not impact the performance significantly.

3. Experimental Results

In this section we analyze the performance of RestartSAT1. and the ReusedTrail tech-
nique. We compare the performance of RestartSAT to MiniSAT 2.2 [1], on which our solver

1. Available from http://www.st.ewi.tudelft.nl/sat/download.php

136

http://www.st.ewi.tudelft.nl/sat/download.php


Reusing the Assignment Trail in CDCL Solvers

0%

20%

40%

60%

80%

100%

0 100 200 300

Const-1
Luby-1

Luby-100

0%

20%

40%

60%

80%

100%

0 100 200 300

Const-1
Luby-1

Luby-100

Figure 4. Fraction of saved propagations (left) and decisions (right) for three restart strategies.

was based. Our experiments were run on the (292) application instances of the SAT 2009
competition2.. Each instance was run with a time limit of 1200 seconds using a server of
20 Intel Xeon X5570 CPUs running on 2.9 GHz with 32 GB of memory. We consider three
restart strategies in our experiments. Since ReusedTrail aims to reduce restart cost, we
use a radical strategy that restarts before every decision (Const-1) and a Luby sequence [4]
with unit run 1 (Luby-1). We also consider Luby-100, because it is used by MiniSAT.

To illustrate the effectiveness of ReusedTrail, we determine the fraction of decisions
and propagations that were saved (reused) by using ReusedTrail.3. Fig. 4 shows the
results for all instances sorted by this fraction (sorted separately for each of the restart
strategies). Observe that ReusedTrail often significantly reduces redundant work for
Luby-1 (and Const-1), by reusing over 40% of the decisions and 20% of the propagations.
Unlike the differences in the two graphs, their average fractions – the average fraction of
each instance weighted by the total number of propagations or decisions – are almost equal;
60% for Const-1, 35% for Luby-1, and 1% for Luby-100. The fraction is higher for larger
instances, because the weighted averages are larger than the fractions of most instances.

Next, we compare the CPU time needed to solve each instance between MiniSAT and
RestartSAT. Fig. 5 shows the run time for MiniSAT and RestartSAT for both restart strate-
gies. In general, the solving time in RestartSAT has improved over MiniSAT, however
for some instances RestartSAT performs worse. For these benchmarks the performance
greatly depends on the seed.4.

For Luby-100, the improvement in run time is less noticeable because restarts happen
infrequently and the VSIDS order changes dramatically between restarts. However, our ex-
periments show that Luby-1 performs better than Luby-100 in RestartSAT: Luby-1 solves
174 instances (168 in MiniSAT) and Luby-100 solves 172 (170 in MiniSAT). Const-1 ben-
efits most from ReusedTrail and solves 163 instances (147 in MiniSAT), but is not yet
competitive.

2. Available from http://www.satcompetition.org/

3. These can be computed by summing the number of decisions up to the ReusedTrail level over all
iterations and dividing them by the total number of reused and performed decisions and propagations.

4. MiniSAT has the option to randomly initialize the VSIDS scores. For many benchmarks the seed used
for the initialization has a huge impact on the performance.

137

http://www.satcompetition.org/


P. van der Tak et al.

MiniSAT 2.2
w/ Const-1
CPU

1

10

100

1000

1 10 100 1000

+++++++++

+
+

+

++++++

+

+ +

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

++

+

++

+

++++

++

+

+

+

++++++

+

+

+

+

+

+

+ +

+

+

+

++ ++++++++++++

+

+

+

+

+

+
++++

+

+

+
+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

++++

+

++++++++++++++

+
++

+++++

+

+++++

+ ++

++
+

+

+

+

+

+

+

+
+

++ +

+

+
+

+
+ +

+

+
+
+++

+

+

++++++

+

+

+++++++

+

++

+

+

+

+ +

+

+

+

+

+++++++

+

+
+

+

+
+

+
+

++

+

+++

+

+
++

+

++++

+

+

++

+
+ +

+ +

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

++

MiniSAT 2.2
w/ Luby-1
CPU

1

10

100

1000

1 10 100 1000

+++++++++

++

+

++++++

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

++

+

++

+

+
+++

++

+

+

+

++++

+

+
+

+ +

+

+

+

+

+
+

+
+

++
+

+ ++++++++++

+ +

+

+

+

+++++

+
+

+

+ +

+
+ +

+
+

+

++

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++++++++++++

+++

+++++

+

+

+

+++

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

++

+ +

+ +
+

++

+

+

++++++

+

+

+++++++

+

++

+

+

+

+

+

+

+

+

+

+++++++

+

+

+

+

+
+

++

++

+

+

+

+

+

+
+
+

+

++++

+

+

++

+
++

+

+

+

+

+

+

+ +
+

+

+ ++

+

+

+

+

+

+

+

+

Figure 5. Solving time (s) comparison between MiniSAT and RestartSAT for the SAT 2009

application benchmarks. RestartSAT is faster below the diagonal.

A lower VSIDS decay value δ further improves the results. Notice that this will make
ReusedTrail itself somewhat less effective because the VSIDS order will change faster.
Yet, δ = 0.75 improves performances with frequent restarts [8]: Const-1, Luby-1, and Luby-
100 solve 169, 185, and 176 instances respectively. RestartSAT is thus able to solve 15 more
instances than MiniSAT within the same time limit.

References

[1] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT’03, pages 502–518, 2003.

[2] C.P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinatorial
search. In CP’97, pages 121–135, 1997.

[3] S. Haim and M.J.H. Heule. Towards ultra rapid restarts, 2010. Technical report, UNSW
and TU Delft.

[4] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas algorithms. In
ISTCS, pages 128–133, 1993.

[5] J.P. Marques-Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learning SAT

Solvers, FAIA 185, chapter 4, pages 131–153. IOS Press, February 2009.

[6] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering
an efficient sat solver. In DAC ’01, pages 530–535, 2001.

[7] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for satis-
fiability solvers. In SAT’07, pages 294–299, 2007.

[8] A. Ramos, P. van der Tak, and M.J.H. Heule. Between restarts and backjumps. Lecture
Notes in Computer Science 6695, pages 216–229. Springer, 2011.

[9] T. Walsh. Search in a small world. In IJCAI 99, pages 1172–1177, 1999.

138


	Introduction
	Reused Trail
	Experimental Results

