
Unsatisfiability Proofs for
Distributed Clause-Sharing SAT Solvers

Dawn Michaelson2 � , Dominik Schreiber3 � , Marijn J.H. Heule1,4 ,
Benjamin Kiesl-Reiter1 , and Michael W. Whalen1,2

1 Amazon Web Services
2 University of Minnesota

3 Karlsruhe Institute of Technology
4 Carnegie Mellon University

Abstract. Distributed clause-sharing SAT solvers can solve problems
up to one hundred times faster than sequential SAT solvers by shar-
ing derived information among multiple sequential solvers working on
the same problem. Unlike sequential solvers, however, distributed solvers
have not been able to produce proofs of unsatisfiability in a scalable man-
ner, which has limited their use in critical applications. In this paper,
we present a method to produce unsatisfiability proofs for distributed
SAT solvers by combining the partial proofs produced by each sequen-
tial solver into a single, linear proof. Our approach is more scalable and
general than previous explorations for parallel clause-sharing solvers, al-
lowing use on distributed solvers without shared memory. We propose a
simple sequential algorithm as well as a fully distributed algorithm for
proof composition. Our empirical evaluation shows that for large-scale
distributed solvers (100 nodes of 16 cores each), our distributed approach
allows reliable proof composition and checking with reasonable overhead.
We analyze the overhead and discuss how and where future efforts may
further improve performance.

Keywords: SAT solving · proofs · distributed computing.

1 Introduction

SAT solvers are general-purpose tools for solving complex computational prob-
lems. By encoding domain problems into propositional logic, users have suc-
cessfully applied SAT solvers in various fields such as formal verification [31],
automated planning [25], and mathematics [8, 16]. The list of applications has
grown significantly over the years, mainly because algorithmic improvements
have led to orders of magnitude improvement in the performance of the best
sequential solvers (see, e.g., [21] for a comparison).

Despite all this progress, there are still many problems that cannot be solved
quickly with even the best sequential solvers, pushing researchers to explore
ways of parallelizing SAT solving. One approach that has worked well for specific
problem instances is Cube-and-Conquer [17, 18], which can achieve near-linear

http://orcid.org/0000-0003-1924-9466
http://orcid.org/0000-0002-4185-1851
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0003-3522-3653
http://orcid.org/0000-0003-3824-1435

2 Michaelson et al.

speedups for thousands of cores but requires domain knowledge about how ef-
fectively to split a problem into subproblems. An alternative approach that does
not require such knowledge is clause-sharing portfolio solving, which has recently
led to solvers [12,28] achieving impressive speedups (10x–100x on a 100x16 core
cluster) over the best sequential solvers across broad sets of benchmarks.5

Although distributed solvers are demonstrably the most powerful tools for
solving hard SAT problems, there is an important caveat: unlike sequential
solvers, current distributed clause-sharing solvers cannot produce proofs of un-
satisfiability. While there has been foundational work in producing proofs for
shared-memory clause-sharing SAT solvers [14], existing approaches are neither
scalable nor general enough for large-scale distributed solvers. This is not just a
theoretical problem—for four problems in the 2020 and 2021 SAT competitions,
distributed solvers produced incorrect answers that were not discovered until the
2022 competition because they could not be independently verified.6

In this paper, we deal with this issue and present the first scalable approach
for generating proofs for distributed SAT solvers. To construct proofs, we main-
tain provenance information about shared clauses in order to track how they
are used in the global solving process, and we use the recently-developed LRAT
proof format [9] to track dependencies among partial proofs produced by solver
instances. By exploiting these dependencies, we are then able to reconstruct a
single linear proof from all the partial proofs produced by the sequential solvers.
We first present a simple sequential algorithm for proof reconstruction before
devising a parallel algorithm that can even be implemented in a distributed way.
Both algorithms produce independently-verifiable proofs in the LRAT format.
We demonstrate our approaches using an LRAT-producing version of the se-
quential SAT solver CaDiCaL [5] to turn it into a clause-sharing solver, and
then modify the distributed solver Mallob [28] to orchestrate a portfolio of such
CaDiCaL instances while tracking the IDs of all shared clauses.

We conduct an evaluation of our approaches from the perspective of efficiency,
benchmarking the performance of our clause-sharing portfolio solver against the
winners of the cloud track, parallel track, and sequential track from the SAT
Competition 2022. Adding proof support introduces several kinds of overhead
for clause-sharing portfolios in terms of solving, proof reconstruction, and proof
checking, which we examine in detail. We show that even with this overhead, dis-
tributed solving and proving is much faster than the best sequential approaches.
We also demonstrate that our approach dramatically outperforms previous work
on proof production for clause-sharing portfolios [14]. We argue that much of the
overhead of our current setup can be compensated, among other measures, by
improving support for LRAT in solver backends. We thus hope that our work
provides an impetus for researchers to add LRAT support to other solvers.

Our main contributions are as follows:

5 c.f.: the SAT Competition 2022 results:
https://satcompetition.github.io/2022/downloads/sc2022-detailed-results.zip

6 The incorrectly scored problems were SAT_MS_sat_nurikabe_p08.pddl_71.cnf,
randomG-Mix-n18-d05.cnf, php12e12.cnf, and Cake_9_20.cnf.

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 3

– We present the first effective and scalable approach for proof generation in
distributed SAT solving.

– We implement our approach on top of the state-of-the-art solvers CaDiCaL
and Mallob.

– We perform a large-scale empirical evaluation analyzing the overhead intro-
duced by proof production as compared to state-of-the-art portfolios.

– We demonstrate that our approach dramatically outperforms previous work
in parallel proof production, and that it remains substantially more scalable
than the best sequential solvers.

The rest of this paper is structured as follows. In Section 2, we present the
background required to understand the rest of our paper and discuss related
work. In Section 3, we describe the general problem of producing proofs for
distributed SAT solving and a simple algorithm for proof combination. In Sec-
tion 4, we describe a much more efficient distributed version of our algorithm
before discussing implementation details in Section 5. Finally, we present the
results of our empirical evaluation in Section 6 and conclude with a summary
and an outlook for future work in Section 7.

2 Background and Related Work

The Boolean satisfiability problem (SAT) asks whether a Boolean formula can
be satisfied by some assignment of truth values to its variables. An overview can
be found in [6]. We consider formulas in conjunctive normal form (CNF). As
such, a formula F is a conjunction (logical “AND”) of disjunctions (logical “OR”)
of literals, where a literal is a Boolean variable or its negation. For example,
(a ∨ b ∨ c) ∧ (b ∨ c) ∧ (a) is a formula with variables a, b, c and three clauses.
A truth assignment A maps each variable to a Boolean value (true or false). A
formula F is satisfied by an assignment A if F evaluates to true under A, and
F is satisfiable if such an assignment exists. Otherwise, F is called unsatisfiable.

If a formula F is found to be satisfiable, modern SAT solvers commonly
output a truth assignment; users can easily evaluate F under the assignment in
linear time to verify that F is indeed satisfiable. In contrast, if a formula turns
out unsatisfiable, sequential SAT solvers produce an independently-checkable
proof that there exists no assignment that satisfies the formula.

File Formats in Practical SAT Solving. In practical SAT solving, formulas are
specified in the DIMACS format. DIMACS files feature a header of the form
‘p cnf #variables #clauses’ followed by a list of clauses, one clause per line.
For example, the clause (x1 ∨x2 ∨x3) is represented as ‘1 -2 3 0’. An example
formula in DIMACS format is given in Figure 1.

The current standard format for proofs is DRAT [15]. DRAT files are similar
to DIMACS files, with each line containing a proof statement that is either an
addition or a deletion. Additions are lines that represent clauses like in the DI-
MACS format; they identify clauses that were derived (“learned”) by the solver.
Each clause addition must preserve satisfiability by adhering to the so-called

4 Michaelson et al.

DIMACS
p cnf 4 8
1 -2 0

2 -4 0
1 2 4 0

-1 -3 0
1 -3 0

-1 3 0
1 3 -4 0
1 3 4 0

DRAT

-3 0
1 2 0

-1 0
d -3 0

2 3 -4 0
1 2 3 0

0

LRAT

9 -3 0 5 4 0
10 1 2 0 3 2 0
11 -1 0 6 9 0
11 d 9 0
12 2 3 -4 0 7 11 0
13 1 2 3 0 8 12 0
14 0 11 10 1 0

Fig. 1: DIMACS formula and corresponding proofs in DRAT and LRAT format.

RAT criterion—as the details of RAT are not essential to our paper, we refer
the reader to the respective literature for more details [20]. Deletions are lines
that start with a ‘d’, followed by a clause; they identify clauses that were deleted
by the solver because they were not deemed necessary anymore. Clause deletions
can only make a formula “more satisfiable”, meaning that they aren’t required
for deriving unsatisfiability, but they drastically speed up proof checking. A valid
DRAT proof of unsatisfiability ends with the derivation of the empty clause. As
the empty clause is trivially unsatisfiable (and since each proof step preserves
satisfiability) the unsatisfiability of the original formula can then be concluded.
An example DRAT proof is given in Figure 1.

The more recent LRAT proof format [9] augments each clause-addition step
with so-called hints, which identify the clauses that were required to derive the
current clause. This makes proof checking more efficient, and in fact the usual
pipeline for trusted proof checking is to first use an efficient but unverified tool
(like DRAT-trim [15]) to transform a DRAT proof into an LRAT proof, and
then check the resulting LRAT proof with a formally verified proof checker (c.f.,
[9, 13, 22, 30]). Figure 1 shows an LRAT proof corresponding to a DRAT proof.
Each proof line starts with a clause ID. The numbering starts with 9 because
the eight clauses of the original formula are assigned the IDs 1 to 8. Each clause
addition first lists the literals of the clause, then a terminating 0, followed by
hints (in the form of clause IDs), and finally another 0. For example, clause
9 contains the literal -3 and can be derived from the clauses 4 and 5 of the
original formula. Clause deletions just state the clause ID of the clause that is
to be deleted, as in the later deletion of clause 9. In our work, we exploit the
hints of LRAT to determine dependencies among distributed solvers.

Parallel and Distributed SAT Solving. One way to parallelize SAT solving is to
run a portfolio of sequential solvers in parallel and to consider a problem solved
as soon as one of the solvers finishes (c.f. [1, 4, 5, 11, 12, 18, 23, 29, 32]). Given
that the solvers are sufficiently diverse, portfolio solving is already effective if
all of the sequential solvers work independently, but performance and scalability
can be boosted significantly by having the solvers share information in the form
of learned clauses [4, 12]. This approach is taken by the distributed solver Mal-
lob [28], which won the cloud track of the last three SAT competitions [2,3,27].
As opposed to other solvers, Mallob relies on a communication-efficient aggrega-

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 5

tion strategy to collect the globally most useful learned clauses and to reliably
filter duplicates as well as previously shared clauses [27]. With this strategy,
which aims to maximize the density and utility of the communicated data, Mal-
lob scored first place in all four eligible subtracks for unsatisfiable problems at
the 2022 SAT Competition.

As we discuss in more detail later, the drawback of clause sharing is that a
local proof written by an individual solver may contain clauses whose deriva-
tions cannot be justified because they rely on clauses imported from another
solver. Previous work focuses on writing DRAT proofs for clause-sharing par-
allel solvers [14]. In that work, solvers write to the same shared proof as they
learn clauses. However, since the clauses are shared, one solver deleting a clause
could invalidate a later clause-addition by another solver that is still holding the
clause. To handle this, the parallel solver moderates deletion statements, only
writing them to the proof once all solvers have deleted a clause, which leads to
poor scalability during proof search. In our approach, solvers write proof files
fully independently—only when the unsatisfiability of the problem has been de-
termined do we combine all proofs into a single valid proof.

Other recent work includes reconstructing proofs from divide-and-conquer
solvers [24] and from a particular shared-memory parallel solver [10] whereas we
aim to exploit distributed portfolio solving.

3 Basic Proof Production

Our goal is to produce checkable unsatisfiability proofs for problems solved by
distributed clause-sharing SAT solvers. We propose to reuse the work done on
proofs for sequential solvers by having each solver produce a partial proof con-
taining the clauses it learned. These partial proofs are invalid in general because
each sequential solver can rely on clauses shared by other solvers when learning
new clauses. For example, when solver A derives a new clause, it might rely on
clauses from solvers B and C, which in turn relied on clauses from solvers D
and E, and so on. The justification of A’s clause derivation is thus spread across
multiple partial proofs. We need to combine the partial proofs into a single valid
proof in which the clauses are in dependency order, meaning that each clause
can be derived from previous clauses.

To generate an efficiently-checkable combined proof in a scalable way, we
must solve three challenges:

1. Provide metadata to identify which solver produced each learned clause.
2. Efficiently sort learned clauses in dependency order across all solvers.
3. Reduce proof size by removing unnecessary clauses.
Switching from DRAT to the LRAT proof format provides the mechanism to

unlock all three challenges. First, we specialize the clause-numbering scheme used
by LRAT in order to distinguish the clauses produced by each solver. Second,
we use the dependency information from LRAT to construct a complete proof
from the partial proofs produced by each solver. Finally, we determine which
clauses are unnecessary (or used only for certain parts of the proof) to delete
clauses from the proof as soon as they are no longer required.

6 Michaelson et al.

Algorithm 1 Algorithm for combining partial proofs
1: function Combine(partial proofs p1, p2, ...pn, number of original clauses o)
2: i ← 1
3: while true do
4: if pi .hasNext() then
5: 〈id, type, clause, proofHint〉 ← pi .peekNext()
6: if dependenciesSatisfied(proofHint) then
7: emit 〈id, type, clause, proofHint〉
8: pi .next() . Line completed
9: if clause = ∅ then . Derived empty clause
10: return
11: else . Leave the line and move to next partial proof
12: i← (i mod n) + 1

13: else . Move to next partial proof if current is done
14: i← (i mod n) + 1

We update the clause-distribution mechanism in the distributed solver to
broadcast the clause ID with each learned clause. A receiving solver stores the
clause with its ID and uses the ID in proof hints when the clause is used locally,
as it does with locally-derived clauses. Unlike locally-derived clauses, we add no
derivation lines for remote clauses to the local proof. Instead, these derivations
will be added to the final proof when combining the partial proofs.

3.1 Solver Partial Proof Production

To combine the partial proofs into a complete proof, we modify the mechanism
producing LRAT proofs in each of the component solvers. We assign to each
clause an ID that is unique across solvers and identifies which solver originally
derived it. The following mapping from clauses to IDs achieves this:

Definition 1. Let o be the number of clauses in the original formula and let
n be the number of sequential solvers. Then, the ID of the k-th derived clause
(k ≥ 0) of solver i is defined as ID i

k = o+ i+ nk.

Given ID i
k, we can easily determine the solver ID i using modular arithmetic.

3.2 Partial Proof Combination

Once the distributed solver has concluded the input formula is unsatisfiable, we
have n partial proofs. The clause derivations in these proofs refer to clauses of
other partial proofs, but they are, locally, in dependency order. We can therefore
combine the partial proofs without reordering their clauses beforehand. We can
simply interleave their clauses so the resulting proof is also in dependency order,
ignoring any deletions in the partial proofs.

Our algorithm goes through the partial proofs round-robin, at each step
emitting all the clauses from each file where the dependencies of the clause have

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 7

Instance 1
9 -3 0 5 4 0

11 -1 0 6 9 0
11 d 9 0
13 1 2 3 0 8 12 0

Instance 2
10 1 2 0 3 2 0
12 2 3 -4 0 7 11 0
14 0 11 10 1 0

Combined
9 -3 0 5 4 0

11 -1 0 6 9 0
10 1 2 0 3 2 0
12 2 3 -4 0 7 11 0
14 0 11 10 1 0

Fig. 2: Partial proofs and combined proof of unsatisfiability.

already been emitted. It ends when the empty clause is emitted. The procedure
is shown in Algorithm 1. For each partial proof, we maintain an iterator over the
learned clauses. We add the next clause from the current partial proof (pi) to the
final proof if its dependencies are satisfied (determined by comparing each hint
to the last clause emitted from the partial proof whence it originated); otherwise
it cycles to the next partial proof. It emits the line and moves to the next clause
in the file. The algorithm terminates when it emits the empty clause (line 10).

Example 1. Suppose that two solver instances (instance 1 and instance 2) de-
termined together that the formula from Figure 1 is unsatisfiable, with the two
partial proofs shown in Figure 2. We start with instance 1. As clause 9 only relies
on original clauses, we emit it. Clause 11 relies on original clause 6 and emitted
clause 9, so we emit it. Clause 13 relies on clauses 8 and 12, which is not emitted,
so we cannot emit clause 13 and move to instance 2. Clause 10 can be emitted,
as can clause 12, which relies on an original and an emitted clause. Clause 14
relies on emitted clauses 11 and 10 and on original clause 1, so we can emit it as
well. Since clause 14 is the empty clause, we finish with a complete proof, shown
in Figure 2(c). Notice that clause 13 was not added to the combined proof, since
it was not required to satisfy any dependencies of the empty clause.

3.3 Proof Pruning

The combined proof produced by our procedure is valid but not efficiently check-
able because (1) it can contain clauses that are not required to derive the empty
clause and (2) it does not contain deletion lines, meaning that a proof checker
must maintain all learned clauses in memory throughout the checking process.
To reduce size and to improve proof-checking performance, we prune our com-
bined proof toward a minimal proof containing only necessary clauses, and we
add deletion statements for clauses as soon as they are not needed anymore.

Algorithm 2 shows our pruning algorithm that walks the combined proof in
reverse (similar to backward checking of DRAT proofs [19]). We maintain a set of
clauses required in the proof, initialized to the empty clause alone. We then pro-
cess all clauses in reverse order, including the empty clause, ignoring all clauses
not in the required set. For each required clause, we check its dependencies to
see if this is the first time (from the proof’s end) a dependency is seen; if so,
we emit a deletion line for the dependency since it will never be used again in
the proof. After checking all its dependencies, we output the clause itself. The

8 Michaelson et al.

Algorithm 2 Algorithm for pruning proofs
1: function Prune(combined and reversed proof p, number of original clauses o)
2: required← {p.peekNextId()} . Must be empty clause, which is required
3: while p.hasNext() do
4: 〈id, type, clause, proofHint〉 ← p.readNext()
5: if id ∈ required then . Only process a line if it is required later
6: for hint ∈ proofHint do
7: if hint > o ∧ hint /∈ required then . Not used later
8: required← required ∪ {hint}
9: emit 〈id, delete, hint〉
10: emit 〈id, add, clause, proofHint〉

final output of the algorithm is a proof in reversed order, where each clause is
required for some derivation and deleted as soon as it is no longer required.

Example 2. Consider the combined proof from Figure 2. After applying Algo-
rithm 2, working backward from clause 14, we determine that clause 12 is not
required, so it is removed. Additionally, prior to clause 11, clause 9 is not in the
required set, so it can be deleted after processing clause 11. On larger proofs, as
discussed in Section 6, pruning can reduce the size of the proof by 10x or more.

4 Distributed Proof Production

The proof production as described above is sequential and may process huge
amounts of data, all of which needs to be accessible from the machine that
executes the procedure. In addition, maintaining the required clause IDs during
the procedure may require a prohibitive amount of memory for large proofs. In
the following, we propose an efficient distributed approach to proof production.

4.1 Overview

Our previous sequential proof-combination algorithm first combines all partial
proofs into a single proof and then prunes unneeded proof lines. In contrast,
our distributed algorithm first prunes all partial proofs in parallel and only then
merges them into a single file.

We have m processes with c solver instances each, amounting to a total of
n = mc solvers. We make use of the fact that the solvers exchange clauses in
periodic intervals (one second by default). We refer to these intervals between
subsequent sharing operations as epochs. Consider Fig. 3 (left): Clause 118 was
produced by S2 in epoch 1. Its derivation may depend on local clause 114 and on
any of the 11 clauses produced in epoch 0, but it cannot depend, e.g., on clause
109 or 111 since these clauses have been produced after the last clause sharing.
More generally, a clause c produced by instance i during epoch e can only depend
on (i) earlier clauses by instance i produced during epoch e or earlier, and (ii)
clauses by instances j 6= i produced before epoch e.

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 9

S0

S1

S2

S3

100104108112

101105

102106

103107

116

109

110

111

S0

S1

S2

S3

100104108112

101105

102106110

103107

Epoch 0 Epoch 1

Sharing
Epoch 0 Epoch 1

Sharing

. . .

. . .

. . .

120124 128

113

114 122 . . .

Epoch 2

123

Sharing

128

129

130

131

Epoch 2

Sharing

. . .

. . .

. . .

. . .

116120124

117

118122

119123127

Produced clauses

115119

118

Produced clauses

Fig. 3: Four solvers work on a formula with 99 original clauses, produce new
clauses (depicted by their ID), and share clauses periodically, without (left) and
with (right) aligning clause IDs.

Using this knowledge, we can essentially rewind the solving procedure. Each
process reads its partial proofs in reverse order, outputs each line which adds a
required clause, and adds the hints of each such clause to the required clauses.
Required remote clauses produced in epoch e are transferred to their process of
origin before any proof lines from epoch e are read. As such, whenever a process
reads a proof line, it knows whether the clause is required. The outputs of all
processes can be merged into a single valid proof (Section 4.3).

4.2 Distributed Pruning

Clause ID Alignment. To synchronize the reading and redistribution of clause
IDs in our distributed pruning, we need a way to decide from which epoch a
remote clause ID originates. However, solvers generally produce clauses with
different speeds, so the IDs by different solvers will likely be in dissimilar ranges
within the same epoch over time. For instance, in Fig. 3 (left) instance S3 has no
way of knowing from which epoch clause 118 originates. To solve this issue, we
propose to align all produced clause IDs after each sharing. During the solving
procedure, we add a certain offset δei to each ID produced by instance i in epoch
e. As such, we can associate each epoch e with a global interval [Ae, Ae+1) that
contains all clause IDs produced in that epoch. In Fig. 3 (right), A0 = 100,
A1 = 116, and A2 = 128. Clause 118 on the left has been aligned to 122 on the
right (δ12 = 4) and due to A1 ≤ 122 < A2 all instances know that this clause
originates from epoch 1.

Initially, δ0i := 0 for all i. Let Iei be the first original (unaligned) ID produced
by instance i in epoch e. With the sharing that initiates epoch e > 0, we compute
the common start of epoch e, Ae := maxi{Iei + δe−1

i − i}, as the lowest possible
value that is larger than all clause IDs from epoch e−1. We then compute offsets
δei in such a way that Iei +δei = Ae+i, which yields δei := (Ae+i)−Iei . If we then
export a clause produced during e by instance i, we add δei to its ID, and if we
import shared clauses to i, we filter any clauses produced by i itself. Note that
we do not modify the solvers’ internal ID counters or the proofs they output.
Later, when reading the partial proof of solver i at epoch e, we need to add δei
to each ID originating from i. All other clause IDs are already aligned.

10 Michaelson et al.

Rewinding the Solve Procedure. Assume that instance u ∈ {1, . . . , n} has derived
the empty clause in epoch ê. For each local solver i, each process has a frontier
Fi of required clauses produced by i. In addition, each process has a backlog B
of remote required clauses. B and Fi are collections of clause IDs and can be
thought of as maximum-first priority queues. Initially, Fu contains the ID of the
empty clause while all other frontiers and backlogs are empty. Iteration x ≥ 0 of
our algorithm processes epoch ê− x and features two stages:

1. Processing: Each process continues to read its partial proofs in reverse
order from the last introduced clause of the current epoch. If a line from solver
i is read whose clause ID is at the top of Fi, then the ID is removed from Fi,
the line is output, and each clause ID hint h in the line is treated as follows:
– h is inserted in Fj if local solver j (possibly j = i) produced h.
– h is inserted in B if a remote solver produced h.
– h is dropped if h is an ID of an original clause of the problem.

Reading stops as soon as a line’s ID precedes epoch e = ê − x. Each Fi as well
as B now only contain clauses produced before e.

2. Task redistribution: Each process extracts all clause IDs from B that were
produced during ê−x−1. These clause IDs are aggregated among all processes,
eliminating duplicates in the same manner as Mallob’s clause sharing detects
duplicate clauses [28]. Each process traverses the aggregated clause IDs, and
each clause produced by a local solver i is added to Fi.

Our algorithm stops in iteration ê after the Processing stage, at which point
all frontiers and backlogs are empty and all relevant proof lines have been output.

Analysis. In terms of total work performed, all partial proofs are read completely.
For each required clause we may perform an insertion into some B, a deletion
from said B, an insertion into some Fi, and a deletion from said Fi. If we assume
logarithmic work for each insertion and deletion, the work for these operations
is linear in the combined size of all partial proofs and loglinear in the size of the
output proof. In addition, we have ê iterations of communication whose overall
volume is bounded by the communication done during solving. In fact, since only
a subset of shared clauses are required and we only share 64 bits per clause, we
expect strictly less communication than during solving. Computing Ae for each
epoch e during solving is negligible since the necessary aggregation and broadcast
can be integrated into an existing collective operation. Regarding memory usage,
the size of each B and each Fi can be proportional to the combined size of
all required lines of the according partial proofs. However, we can make use of
external data structures which keep their content on disk except for a few buffers.

4.3 Merging Step

For each partial proof processed during the pruning step, we have a stream of
proof lines sorted in reverse chronological order, i.e., starting with the highest
clause ID. The remaining task is to merge all these lines into a single, sorted
proof file. As shown in Fig. 4 (left), we arrange all processes in a tree. We can
easily merge a number of sorted input streams into a single sorted output stream

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 11

103
93

95107
87

107
103
95
93
87
85

...

85

...
...

...

Fig. 4: Left: Proof merging with seven processes and 14 solvers. Each box rep-
resents a process with two local proof sources. Dashed arrows denote commu-
nication. Right: Example of merging three streams of LRAT lines into a single
stream. Each number i represents an LRAT line describing a clause of ID i.

by repeatedly outputting the line with the highest ID among all inputs (Fig. 4
right). This way, we can hierarchically merge all streams along the tree. At the
tree’s root, the output stream is directed into a file. This is a sequential I/O task
that limits the speed of merging. Finally, since the produced file is in reverse
order, a buffered operation reverses the file’s content.

A final challenge is to add clause deletions to the final proof. Before a line is
written to the combined proof file, we can scan its hints and output a deletion
line for each hint we did not encounter before (see Section 3.3). However, imple-
menting this in an exact manner requires maintaining a set of clause IDs which
scales with the final proof size. Since our proof remains valid even if we omit
some clause deletions, we can use an approximate membership query (AMQ)
structure with fixed size and a small false positive rate, e.g., a Bloom filter [7].

5 Implementation

We employ a solver portfolio based on the sequential SAT solver CaDiCaL [5].
We modified CaDiCaL to output LRAT proof lines and to assign clause IDs as
described in Section 3.1. To ensure sound LRAT proof logging, some features of
CaDiCaL currently need to be turned off, such as bounded variable elimination,
hyper-ternary resolution, and vivification. Similarly, Mallob’s original portfolio
of CaDiCaL configurations features several options that are incompatible with
our proof logging as of yet. Therefore, we created a smaller portfolio of “safe”
configurations that include shuffling variable priorities, adjusted restart intervals,
and disabled inprocessing. We also use different random seeds and use Mallob’s
diversification based on randomized initial variable polarities.

We modified Mallob to associate each clause with a 64-bit clause ID. For
consistent bookkeeping of sharing epochs, we defer clause sharing until all pro-
cesses have fully initialized their solvers. While several solvers may derive the
empty clause simultaneously, only one of them is selected to be the “winner”
whose empty clause will be traced. The distributed proof production features

12 Michaelson et al.

communication similar to Mallob’s clause sharing. To realize the frontier Fi and
the backlog B described in Section 4.2, we implemented an external-memory
data structure which writes clause IDs to disk, categorized by their epoch. Upon
reaching a new epoch, all clause IDs from this epoch are read from disk and in-
serted into an internal priority queue to allow for efficient polling and insertion.
To merge the pruned partial proofs, we use point-to-point messages to query and
send buffers of proof lines between processes. We interleave this merging with
the pruning procedure in order to avoid writing the intermediate output to disk.
We use a fixed-size Bloom filter to add some deletion lines to the final proof.

6 Evaluation

In this section, we present an evaluation of our proof production approaches. We
provide the associated software as well as a digital appendix online.7

6.1 Experimental Setup

Supporting proofs introduces several kinds of performance overhead for clause-
sharing portfolios in terms of solving, proof reconstruction, and proof checking.
We wish to examine how well our proof-producing solver performs against (1)
best-of-breed parallel and cloud solvers that do not produce proofs, (2) previous
approaches to proof-producing parallel solvers, and (3) best-of-breed sequential
solvers. We analyze the overhead introduced by each phase of the process, and
we discuss how and where future efforts might improve performance.

We use the following pipeline for our proof-producing solvers: First, the in-
put formula is preprocessed by performing exhaustive unit propagation. This is
necessary due to a technical limitation of our LRAT-producing modification of
CaDiCaL. Second, we execute our proof-producing variant of Mallob on the pre-
processed formula. Third, we prune and combine all partial proofs, using either
our sequential proof production or our distributed proof production. Fourth, we
merge the preprocessor’s proof and our produced proof and syntactically trans-
form the result to bring the set of clause IDs into compact shape. Fifth and
finally, we run lrat-check8 to check the final proof. Only steps two and three
of our pipeline are parallelized (step three depending on the particular experi-
ment). We will refer to the first two steps as solving, the third step as assembly,
the fourth step as postprocessing, and the fifth step as checking.

To examine performance overhead for proof-producing parallel and dis-
tributed solvers, we compare our proof-producing cloud and parallel solvers
(mallob-cacld-p and mallob-capar-p) against six solvers. First, we include
the winners of the 2022 SAT competition cloud track (mallob-kicaliglu, us-
ing Kissat+CaDiCaL+Lingeling+Glucose), parallel track (parkissat-rs, using
Kissat), and sequential track (Kissat_MAB-HyWalk), as well as the second place

7 https://github.com/domschrei/mallob/tree/certified-unsat
8 https://github.com/marijnheule/drat-trim

https://github.com/domschrei/mallob/tree/certified-unsat
https://github.com/marijnheule/drat-trim

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 13

Table 1: Overview of solved instances: (S)equential, (P)arallel, and (C)loud
Solver Type Solved SAT UNSAT PAR-2 score
Kissat_MAB-HyWalk S 218 118 100 1065.7
parkissat-rs P 299 155 144 603.0
mallob-ki P 260 113 147 827.6
mallob-capar P 292 145 147 641.6
mallob-capar-p (Seq.) P 279 140 139 719.8
mallob-capar-p (Par.) P 276 141 135 731.4
mallob-kicaliglu C 341 165 176 344.8
mallob-cacld C 333 163 170 378.0
mallob-cacld-p C 314 159 155 484.1

solver from the parallel track (mallob-ki, using Lingeling9). We then run a
parallel and cloud version of Mallob that runs our described CaDiCaL portfolio
without proof production (mallob-capar and mallob-cacld).

Following the SAT competition setup, each cloud solver runs on 100
m6i.4xlarge EC2 instances (16 core, 64GB RAM), each parallel solver runs on
a single m6i.16xlarge EC2 instance (64 core, 256GB RAM), and the sequential
Kissat_MAB-HyWalk runs on a single m6i.4xlarge EC2 instance. For each solver,
we run the full benchmark suite from the SAT-Competition 2022 (400 formulas)
containing both SAT and UNSAT examples. The timeout for the solving step is
1000 seconds, and the timeout for all subsequent steps is set to 4000 seconds.

Since earlier work [14] is no longer competitive in terms of solving time,
we only compare proof-checking times. Specifically, we measure the overhead of
checking un-pruned DRAT proofs as the ones produced by [14]. As such, we
can get a picture of the performance of the earlier approach if it was realized
with state-of-the-art solving techniques. We generate un-pruned DRAT proofs
from the original (un-pruned) LRAT proof by stripping out the dependency
information and adding delete lines for the last use of each clause.

6.2 Results

First we examine the performance overhead of changing portfolios to enable proof
generation as described in Section 5 on the solving process only. Fig. 5 (left) and
Table 1 show this data. The PAR-2 metric takes the average time to solve each
problem, but counts a timeout result as a 2x penalty (e.g., given our timeout of
1000 seconds, a timeout is scored as taking 2000 seconds). We can see that our
CaDiCaL portfolio mallob-capar outperforms the Lingeling-based mallob-ki
significantly and is almost on par with parkissat-rs. Similarly, mallob-cacld
solves eight instances less compared to mallob-kicaliglu but performs almost
equally well otherwise. In both cases, we have constructed solvers which are,

9 mallob-ki employed a Lingeling-based portfolio due to a misconfiguration, see:
http://algo2.iti.kit.edu/schreiber/downloads/mallob-ki-mallob-li.pdf

http://algo2.iti.kit.edu/schreiber/downloads/mallob-ki-mallob-li.pdf

14 Michaelson et al.

0 200 400 600 800 1,000
0

100

200

300

wallclock time

so
lv
ed

in
st
an

ce
s

mallob-kicaliglu
mallob-cacld
mallob-cacld-p
parkissat-rs
mallob-capar
mallob-capar-p (Seq.)
mallob-capar-p (Par.)
mallob-ki
Kissat MAB-HyWalk

101 102 103

101

102

103

solving+assembly (left) +postprocessing (right)

m
a
l
l
o
b
-
c
a
c
l
d
-
p
so
lv
in
g
in

se
co
n
d
s

Fig. 5: Left: Comparison of solving times. Right: Relation of solving times to
assembly and postprocessing times for mallob-cacld-p. Each pair of points
corresponds to one instance, the y coordinate denoting the solving time. The
left x coordinate denotes solving and assembly time and the right x coordinate
denotes solving, assembly, and postprocessing time.

up to a small margin, on par with the state of the art. For our actual proof-
producing solvers, mallob-capar-p and mallob-cacld-p, we noticed a more
pronounced decline in solving performance. On top of the overhead introduced
by proof logging and our preprocessing, we experienced a few technical problems,
including memory issues10, which resulted in a drop in the number of instances
solved and also caused mallob-capar-p with parallel proof production to solve
three instances less than with sequential proof production. We believe that we
can overcome these issues in future versions of our system. That being said, our
proof-producing solvers already outperform any of the solvers at a lower scale.

Second, we examine statistics on proof reconstruction and checking, show-
ing results in Table 2. Since we want to investigate our approaches’ overhead
compared to pure solving, we measure run times as a multiple of the solving
time. (We provide absolute run times in the Appendix, Table 1.) The prefix
“Seq.” denotes mallob-capar-p with sequential proof production, “Par.” denotes
mallob-capar-p with distributed proof production run on a single machine, and
“Cld.” denotes mallob-cacld-p with distributed proof production.

DRAT checking succeeded in 81 out of 139 cases and timed out in 58 cases.
For the successful cases, DRAT checking took 24.8× the solving time on av-
erage whereas our sequential assembly, postprocessing and checking combined
succeeded in 139 cases and only took 3.8× the solving time on average. This
result confirms that our approach successfully overcomes the major scalability
problems of earlier work [14]. In terms of uncompressed proof sizes, our LRAT

10 We disabled Mallob’s memory panic mode to ensure consistent proof logging.

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 15

Table 2: Statistics on proof production and checking. All properties except for
file sizes and pruning factor are given as a multiple of the solving time. We list
minima, maxima, medians, arithmetic means, and the 10th and 90th percentiles.

Property # min p10 med mean p90 max
DRAT check 81 0.512 1.725 7.442 24.815 67.065 169.869
Seq. assembly 139 0.019 0.305 1.376 2.324 5.747 13.289
Seq. postprocessing 139 0.001 0.012 0.131 0.263 0.790 2.218
Seq. checking 139 0.007 0.043 0.572 1.252 3.970 10.980
Seq. asm+post+chk 139 0.037 0.412 2.110 3.840 10.834 26.487
Par. assembly 135 0.059 0.080 0.365 0.805 2.227 7.475
Par. postprocessing 135 0.001 0.016 0.156 0.293 0.861 2.300
Par. checking 135 0.007 0.042 0.622 1.241 3.540 11.645
Par. asm+post+chk 135 0.067 0.167 1.097 2.339 6.611 21.420
Cld. assembly 155 0.114 0.185 1.412 2.444 5.410 44.268
Cld. postprocessing 155 0.003 0.060 0.696 2.046 4.785 39.096
Cld. checking 155 0.033 0.189 3.291 8.883 21.974 170.378
Cld. asm+post+chk 155 0.168 0.577 5.110 13.373 32.484 253.742
DRAT proof size (GiB) 139 0.012 0.366 1.236 3.246 8.395 29.308
Seq. proof size (GiB) 139 0.016 0.223 2.379 5.384 16.082 46.986
Par. proof size (GiB) 135 0.006 0.173 2.034 5.345 13.164 57.739
Cld. proof size (GiB) 155 0.016 0.342 3.940 10.533 30.130 89.106
Cld. pruning factor 155 2.374 5.379 17.826 293.762 337.486 12466.700

proofs can be about twice as large as the DRAT proofs, which seems more
than acceptable considering the dramatic difference in performance. Given that
DRAT-based checking was ineffective at the scale of parallel solvers, we decided
to omit it in our distributed experiments which feature even larger proofs.

Regarding mallob-capar-p with parallel proof production, we can see that
the assembly time is reduced from 2.32× down to 0.81× the solving time on
average, which also improves overall performance (3.84× to 2.34×).

The results for mallob-cacld-p demonstrate that our proof assembly is feasi-
ble, taking around 2.5× the solving time on average. We visualized this overhead
and how it relates to the postprocessing overhead in Fig. 5 (right). The proofs
produced are about twice as large as for mallob-capar-p. Considering that the
proofs originate from 25 times as many solvers, this increase in size is quite mod-
est, which can be explained by our proof pruning. We captured the pruning factor
— the number of clauses in all partial proofs divided by the number of clauses in
the combined proof — for each instance. Our pruning reduces the derived clauses
by a factor of 293.8 on average (17.8 for the median instance), showing that it is
a crucial technique to obtain proofs that are feasible to check. As such, we also
managed to produce and check a proof of unsatisfiability for a formula whose
unsatisfiability has not been verified before (PancakeVsInsertSort_8_7.cnf).

Lastly, to compare our approach at the largest scale with the state of the
art in sequential solving, we computed speedups of mallob-cacld-p, solv-

16 Michaelson et al.

ing times only, over Kissat_MAB-HyWalk and arrived at a median speedup
of 11.5 (Appendix, Table 2). We also analyzed drat-trim checking times of
Kissat_MAB-HyWalk, kindly provided by the competition organizers, and arrived
at a median overhead of 1.1× its own solving time (Appendix, Table 3). Going by
these measures, Kissat_MAB-HyWalk takes around 11.5 · 2.1 ≈ 24.2× the solving
time of mallob-cacld-p to arrive at a checked result while our complete pipeline
only takes 5.1× the solving time for the median instance. This indicates that
our approach is considerably faster than the best available sequential solvers.

We can see that the bottleneck of our pipeline shifts from the assembly step
further to the postprocessing and checking steps when increasing the degree of
parallelism. This is to be expected since the latter steps are, so far, inherently
sequential whereas our proof assembly is scalable. While the postprocessing step
is a technical necessity in our current setup, we believe that large portions of it
can be eliminated in the future with further engineering. For instance, enhancing
the LRAT support of our modified CaDiCaL to natively handle unit clauses in
the input would allow us to skip preprocessing and simplify postprocessing.

7 Conclusion and Future Work

Distributed clause-sharing solvers are currently the fastest tools for solving a
wide range of difficult SAT problems. Nevertheless, they have previously not
supported proof-generation techniques, leading to potential soundness concerns.
In this paper, we have examined mechanisms to add efficient support for proof
generation to clause-sharing portfolio solvers. Our results demonstrate that we
can, with reasonable efficiency, add support to these solvers to have full confi-
dence that the results they produce are correct.

Following our research, more work is required to reduce overhead in the
different steps involved and to improve scalability of the end-to-end procedure.
This may include designing more efficient (perhaps even parallel) LRAT checkers,
examining proof-streaming techniques to eliminate most I/O operations, and
improving LRAT support in solver backends. In fact, it might be possible to
generalize our approach to DRAT-based solvers by adding additional metadata,
and this might allow easier retrofitting of the approach onto larger portfolios of
solvers. We also intend to investigate producing proofs in Mallob for the case
where many problems are solved at once and jobs are rescaled dynamically [26].

Acknowledgments

We would like to thank Mario Carneiro for providing help for
his FRAT-supporting variant of CaDiCaL; Markus Iser for
providing competition data on proof checking; Andrew Gacek
for his suggestions to early drafts of this paper; and the re-
viewers for their helpful feedback. This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agr. No. 882500). This project was par-
tially supported by the U.S. National Science Foundation grant CCF-2015445.

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 17

References

1. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers.
In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. Lecture Notes
in Computer Science, vol. 8561, pp. 197–205. Springer (2014). https://doi.org/
10.1007/978-3-319-09284-3_15

2. Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceed-
ings of SAT Competition 2021: Solver and Benchmark Descriptions. Department of
Computer Science Report Series B, Department of Computer Science, University
of Helsinki, Finland (2021)

3. Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceed-
ings of SAT Competition 2020: Solver and Benchmark Descriptions. Department of
Computer Science Report Series B, Department of Computer Science, University
of Helsinki, Finland (2020)

4. Balyo, T., Sanders, P., Sinz, C.: HordeSat: A massively parallel portfolio SAT
solver. In: Heule, M., Weaver, S. (eds.) Theory and Applications of Satisfiability
Testing – SAT 2015. pp. 156–172. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-24318-4_12

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009),
http://dblp.uni-trier.de/db/series/faia/faia185.html

7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970). https://doi.org/10.1145/362686.
362692

8. Brakensiek, J., Heule, M., Mackey, J., Narváez, D.E.: The resolution of Keller’s
conjecture. J. Autom. Reason. 66(3), 277–300 (2022). https://doi.org/10.1007/
s10817-022-09623-5

9. Cruz-Filipe, L., Heule, M.J.H., Jr., W.A.H., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: de Moura, L. (ed.) Automated De-
duction - CADE 26 - 26th International Conference on Automated Deduction,
Gothenburg, Sweden, August 6-11, 2017, Proceedings. Lecture Notes in Com-
puter Science, vol. 10395, pp. 220–236. Springer (2017). https://doi.org/10.
1007/978-3-319-63046-5_14

10. Fleury, M., Biere, A.: Scalable proof producing multi-threaded SAT solving with
Gimsatul through sharing instead of copying clauses. In: Pragmatics of SAT (2022).
https://doi.org/10.48550/arXiv.2207.13577

11. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62
(2001). https://doi.org/10.1016/S0004-3702(00)00081-3

12. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Sat-
isf. Boolean Model. Comput. 6(4), 245–262 (2009). https://doi.org/10.3233/
sat190070

13. Heule, M., Jr., W.A.H., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) Interactive Theo-
rem Proving - 8th International Conference, ITP 2017, Brasília, Brazil, September

https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1007/978-3-319-24318-4_12
http://dblp.uni-trier.de/db/series/faia/faia185.html
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/s10817-022-09623-5
https://doi.org/10.1007/s10817-022-09623-5
https://doi.org/10.1007/s10817-022-09623-5
https://doi.org/10.1007/s10817-022-09623-5
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.48550/arXiv.2207.13577
https://doi.org/10.48550/arXiv.2207.13577
https://doi.org/10.1016/S0004-3702(00)00081-3
https://doi.org/10.1016/S0004-3702(00)00081-3
https://doi.org/10.3233/sat190070
https://doi.org/10.3233/sat190070
https://doi.org/10.3233/sat190070
https://doi.org/10.3233/sat190070

18 Michaelson et al.

26-29, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10499, pp. 269–
284. Springer (2017). https://doi.org/10.1007/978-3-319-66107-0_18

14. Heule, M., Manthey, N., Philipp, T.: Validating unsatisfiability results of clause
sharing parallel sat solvers. In: POS@ SAT. pp. 12–25 (2014)

15. Heule, M.J.H.: The DRAT format and drat-trim checker. CoRR abs/1610.06229
(2016). https://doi.org/10.48550/arXiv.1610.06229

16. Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18). pp. 6598–6606. AAAI Press (2018). https://doi.org/10.1609/aaai.v32i1.
12209

17. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Berre, D.L.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2016 - 19th In-
ternational Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Lecture
Notes in Computer Science, vol. 9710, pp. 228–245. Springer (2016). https:
//doi.org/10.1007/978-3-319-40970-2_15

18. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., She-
hory, O. (eds.) Hardware and Software: Verification and Testing. pp. 50–65.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34188-5_8

19. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs.
In: 2013 Formal Methods in Computer-Aided Design. pp. 181–188 (2013). https:
//doi.org/10.1109/FMCAD.2013.6679408

20. Järvisalo, M., Heule, M.J., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7364, pp. 355–370. Springer (2012). https://doi.org/10.
1007/978-3-642-31365-3_28

21. Kissat SAT solver. http://fmv.jku.at/kissat/, accessed: 2022-08-17
22. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.

64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z
23. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Painless: A framework for par-

allel SAT solving. In: Gaspers, S., Walsh, T. (eds.) Theory and Applications of
Satisfiability Testing – SAT 2017. pp. 233–250. Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_15

24. Nair, A., Chattopadhyay, S., Wu, H., Ozdemir, A., Barrett, C.: Proof-stitch:
Proof combination for divide and conquer SAT solvers. In: Formal Methods in
Computer-Aided Design. pp. 84–88 (2022). https://doi.org/10.34727/2022/
isbn.978-3-85448-053-2

25. Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Ap-
plications, vol. 185, pp. 483–504. IOS Press (2009). https://doi.org/10.3233/
978-1-58603-929-5-483

26. Sanders, P., Schreiber, D.: Decentralized online scheduling of malleable NP-hard
jobs. In: European Conference on Parallel Processing. pp. 119–135. Springer (2022).
https://doi.org/10.1007/978-3-031-12597-3_8

https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.48550/arXiv.1610.06229
https://doi.org/10.48550/arXiv.1610.06229
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
http://fmv.jku.at/kissat/
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2
https://doi.org/10.3233/978-1-58603-929-5-483
https://doi.org/10.3233/978-1-58603-929-5-483
https://doi.org/10.3233/978-1-58603-929-5-483
https://doi.org/10.3233/978-1-58603-929-5-483
https://doi.org/10.1007/978-3-031-12597-3_8
https://doi.org/10.1007/978-3-031-12597-3_8

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers 19

27. Schreiber, D.: Mallob in the SAT competition 2022. In: Proc. of SAT Competition
2022 – Solver and Benchmark Descriptions. pp. 46–47. Department of Computer
Science Report Series B, University of Helsinki (2022)

28. Schreiber, D., Sanders, P.: Scalable SAT solving in the cloud. In: Li, C.M., Manyà,
F. (eds.) Theory and Applications of Satisfiability Testing – SAT 2021. pp. 518–
534. Springer International Publishing, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3_35

29. Schubert, T., Lewis, M., Becker, B.: Pamiraxt: Parallel SAT solving with threads
and message passing. J. Satisf. Boolean Model. Comput. 6(4), 203–222 (2009).
https://doi.org/10.3233/sat190068

30. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake_lpr: Verified propagation redun-
dancy checking in cakeml. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 27th International Con-
ference, TACAS 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652,
pp. 223–241. Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_12

31. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015). https:
//doi.org/10.1109/JPROC.2015.2455034

32. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based al-
gorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008). https:
//doi.org/10.1613/jair.2490

https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.3233/sat190068
https://doi.org/10.3233/sat190068
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

	Unsatisfiability Proofs forDistributed Clause-Sharing SAT Solvers

