
i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 155 — #1
i

i

i

i

i

i

Handbook of Satisfiability
Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh (Eds.)
IOS Press, 2009
c© 2009 Marijn J.H. Heule and Hans van Maaren and IOS Press. All rights
reserved.

155

Chapter 5

Look-Ahead Based SAT Solvers
Marijn J.H. Heule and Hans van Maaren

5.1. Introduction

Imagine that you are for the first time in New York City (NYC). A cab just
dropped you off at a crossing and now you want to see the most beautiful part
of town. You consider two potential strategies to get going: A conflict-driven
strategy and a look-ahead strategy.

The conflict-driven strategy consists of the following heuristics: On each
crossing you look in all directions and walk towards the crossing which appears
most beautiful at first sight. If at a certain crossing all new directions definitely
lead to dead end situations, you write the location in a booklet to avoid the place
in the future and you evaluate which was the nearest crossing where you likely
chose the wrong direction. You go back to that crossing and continue with a new
preferred direction.

The look-ahead strategy spends much more time to select the next crossing.
First all adjacent crossings are visited. At each of them all directions are ob-
served before returning to the current crossing. Now the next crossing is selected
based on all observed directions. A schematic view of both strategies is shown in
Figure 5.1.

Figure 5.1. A NYC walk, conflict-driven (left) and look-ahead (right). ? denotes the target.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 156 — #2
i

i

i

i

i

i

156 Chapter 5. Look-Ahead Based SAT Solvers

As the reader has probably expected by now, the conflict-driven and look-
ahead SAT solving architectures have several analogies with the conflict-driven
and look-ahead NYC sightseeing strategies. Although the look-ahead NYC walk
appears very costly, in practice it solves some problems quite efficiently. This
chapter walks through the look-ahead architecture for Sat solvers.

5.1.1. Domain of application

Before going into the details of the look-ahead architecture, we first consider a
wide range of problems and ask the question: Which architecture is the most
appropriate to adequately solve a particular instance?

Traditionally, look-ahead Sat solvers are strong on random k-Sat formulae
and especially on the unsatisfiable instances. [Her06] suggest that in practice,
look-ahead Sat solvers are strong on benchmarks with either a low density (ratio
clauses to variables) or a small diameter (longest shortest path in for instance the
resolution graph1). Figure 5.2 illustrates this. Using the structured (crafted and
industrial) benchmarks from the Sat 2005 competition and SATlib, the relative
performance is measured for the solvers minisat (conflict-driven) and march (look-
ahead). For a given combination of density and diameter of the resolution graph,
the strongest solver is plotted.

1

10

100

1000

1 10 100 1000

d
en

si
ty

diameter

minisat

rsrsrs
rsrsrs
rsrsrsrsrsrsrs
rsrsrsrsrsrsrs
rsrsrsrs
rs
rs
rsrsrsrs
rsrsrs

rsrsrs

rs

rs

rs
rs

rsrs
rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rsrsrsrsrs

rs

rs

rsrsrsrsrsrsrsrsrsrsrsrsrs

rsrs

rs

rs rs

rs

rs

rs

rs
rs

rs
rs

rs

rs

rs

rs
rs

rs

rsrs rsrs rsrs

rs

rsrsrs rsrsrs rsrsrsrs

rs rs

rs

rs

rs

rs

march

+
+
+
+

+
+
++
+

+++
++
+++++++++++++++++
+++++++
++++++++++
+++++
+++++
++

+
++

+

++
+

++

++
++
+++++++
++++++++++++++
+++

+++

+++++++++

++ + +++

++++

+

+

+

Figure 5.2. Strongest architecture on structured benchmarks split by density and diameter.

Architectures represented by minisat (conflict-driven) and march (look-ahead).

1The resolution graph is a clause based graph. Its vertices are the clauses and clauses are
connected if they have exactly one clashing literal.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 157 — #3
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 157

Notice that Figure 5.2 compares minisat to march and therefore it should not
be interpreted blindly as a comparison between any conflict-driven and look-ahead
Sat solvers in general. The solver march is the only look-ahead Sat solver that is
optimized for large and structured benchmarks. Selecting a different look-ahead
Sat solver would change the picture in favor of minisat.

However, it seems that in the current state of development both architec-
tures have their own range of applications. The almost sharp separation shown
in Figure 5.2 can be explained as follows: Density expresses the cost of unit prop-
agation. The higher the density, the more clauses need to be reduced for each
assigned variable. Therefore, look-ahead becomes very expensive for formulae
with high densities, while using lazy data-structures (like minisat), the cost of
unit propagation does not increase heavily on these formulae.

The diameter expresses the global connectivity of clauses. If just a few vari-
ables cover all literals in a set of clauses, such a set is referred to as a local cluster.
The larger the diameter, the more local clusters occur within the formula. Local
clusters reduce the effectiveness of reasoning by look-ahead Sat solvers: Assigning
decision variables to a truth value will modify the formula only locally. There-
fore, expensive reasoning is only expected to learn facts within the last modified
cluster. On the other hand, conflict-driven solvers benefit from local clusters:
Conflict clauses will likely arise from local conflicts, yielding small clauses con-
sisting of some covering variables. Also, they may be reused frequently.

5.2. General and Historical Overview

5.2.1. The Look-Ahead Architecture

The look-ahead architecture is based on the DPLL framework [DLL62]: It is a
complete solving method which selects in each step a decision variable xdecision

and recursively calls DPLL for the reduced formula where xdecision is assigned to
false (denoted by F [xdecision = 0]) and another where xdecision is assigned to true
(denoted by F [xdecision = 1]).

A formula F is reduced by unit propagation: Given a formula F , an unas-
signed variable x and a Boolean value B, first x is assigned to B. If this assignment
ϕ results in a unit clause (clause of size 1) then ϕ is expanded by assigning the
remaining literal of that clause to true. This is repeated until no unit clauses
are left in ϕ applied to F (denoted by ϕ ∗ F) - see Algorithm 5.1. The reduced
formula consists of all clauses that are not satisfied. So, F [x =B] := ϕ ∗ F .

Algorithm 5.1 UnitPropagation(formula F , variable x, B ∈ {0, 1})

1: ϕ := {x←B}
2: while empty clause /∈ ϕ ∗ F and unit clause y ∈ ϕ ∗ F do

3: ϕ := ϕ ∪ {y ← 1}
4: end while

5: return ϕ ∗ F

The recursion has two kinds of leaf nodes: Either all clauses have been satis-
fied (denoted by F = ∅), meaning that a satisfying assignment has been found,
or F contains an empty clause (a clause of which all literals have been falsified),
meaning a dead end. In the latter case the algorithm backtracks.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 158 — #4
i

i

i

i

i

i

158 Chapter 5. Look-Ahead Based SAT Solvers

The decision variable is selected by the LookAhead procedure. Besides
selecting xdecision it also attempts to reduce the formula in each step by assigning
forced variables and to further constrain it by adding clauses. Algorithm 5.2 shows
the top level structure. Notice that the LookAhead procedure returns both a
simplified formula and xdecision.

In addition, the presented algorithm uses direction heuristics to select which
of the reduced formulae F [xdecision = 0] or F [xdecision = 1] should be visited
first - see Section 5.3.2. Effective direction heuristics improve the performance on
satisfiable instances2. Although direction heuristics can be applied to all DPLL
based solvers, look-ahead Sat solvers are particularly the ones that use them.

Algorithm 5.2 DPLL(formula F)

1: if F = ∅ then

2: return satisfiable

3: end if

4: < F ; xdecision > := LookAhead(F)
5: if empty clause ∈ F then

6: return unsatisfiable

7: else if no xdecision is selected then

8: return DPLL(F)
9: end if

10: B := DirectionHeuristic(xdecision, F)
11: if DPLL(F [xdecision = B]) = satisfiable then

12: return satisfiable

13: end if

14: return DPLL(F [xdecision = ¬B])

The LookAhead procedure, as the name suggests, performs look-aheads. A
look-ahead on x starts by assigning x to true followed by unit propagation. The
importance of x is measured and possible reductions of the formula are detected.
After this analysis, it backtracks, ending the look-ahead. The rationale of a look-
ahead operation is that evaluating the effect of actually assigning variables to
truth values and performing unit propagation is more adequate than taking a
cheap guess using some statistical data on F .

This brings us to the two main features of the LookAhead procedure. The
first is the decision heuristic which measures the importance of a variable. This
heuristic consists of a difference or distance heuristic (in short Diff) and a heuris-
tic that combines two Diff values (in short MixDiff).

A Diff heuristic measures the reduction of the formulae caused by a look-
ahead. The larger the reduction, the higher the heuristic value. This reduction
can be measured with all kinds of statistics. Effective statistics are the reduction
of free variables and the number of newly created (reduced, but not satisfied)
clauses. The final judgment of a variable is obtained by combining Diff(F , F [x
= 0]) and Diff(F , F [x = 1]) using a MixDiff heuristic. The product of these
numbers is generally considered to be an effective heuristic. It aims to create a
balanced search-tree. Notice that this is not a goal in its own: The trivial 2n tree
is perfectly balanced, but huge. See Chapter 7 for more details and theory.

2Direction heuristics applied in a conflict-driven setting may heavily influence performance
on unsatisfiable formulae.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 159 — #5
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 159

xa

xb xc

0 1

?

1 0 0

DPLL

x1 x2 x3 x4

FLA

0

3

1

1

0

2

1

2

0 1

1

0

2

1

1

LookAhead

#new binaries

Figure 5.3. A graphical representation of the look-ahead architecture. Above, the DPLL

super-structure (a binary tree) is shown. In each node of the DPLL-tree, the LookAhead

procedure is called to select the decision variable and to compute implied variables by additional

reasoning. Black nodes refer to leaf nodes and variables shown in the vertices refer to the decision

variables and look-ahead variables, respectively.

The second main feature of the look-ahead architecture is the detection of
failed literals: If a look-ahead on x results in a conflict, then x is forced to be
assigned to false. Detection of failed literals reduces the formula because of these
“free” assignments. The LookAhead procedure terminates in case both xi and
¬xi are detected as failed literals.

Figure 5.3 shows a graphical representation of the look-ahead architecture.
On the top level, the DPLL framework is used. The selection of the decision
variable, reduction of the formula, and addition of learned clauses are performed
by the LookAhead procedure. Black nodes refer to a dead end situation, either
an unsatisfiable leaf node (DPLL) or a failed literal (LookAhead procedure).

Example 5.2.1. Consider the following example formula below:

FLA = (¬x1∨x3)∧(x1∨x2∨x3)∧(x1∨¬x2∨x4)∧(x1∨¬x2∨¬x4)∧(x2∨¬x3∨x4)

Since the largest clauses in FLA have size three, only new binary clauses can
be created. For instance, during the look-ahead on ¬x1, three new binary clauses
are created (all clauses in which literal x1 occurs). The look-ahead on x1 will
force x3 to be assigned to true by unit propagation. This will reduce the last
clause to a binary clause, while all other clauses become satisfied. Similarly, we
can compute the number of new binary clauses (denoted by #new binaries) for all
look-aheads - see Figure 5.3.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 160 — #6
i

i

i

i

i

i

160 Chapter 5. Look-Ahead Based SAT Solvers

Notice that the look-ahead on ¬x3 results in a conflict. So ¬x3 is a failed
literal and forces x3 to be assigned to true. Due to this forced assignment the
formula changes. To improve the accuracy of the look-ahead heuristics (in this
case the reduction measurement), the look-aheads should be performed again.
However, by assigning forced variables, more failed literals might be detected.
So, for accuracy, first iteratively perform the look-aheads until no new failed
literals are detected.

Finally, the selection of the decision variable is based on the reduction mea-
surements of both the look-ahead on ¬xi and xi. Generally, the product is used to
combine the numbers. In this example, x2 would be selected as decision variable,
because the product of the reduction measured while performing look-ahead on
¬x2 and x2 is the highest (i.e. 4). Section 7.6 discusses the preference for the
product in more detail.

Several enhancements of the look-ahead architecture have been developed. To
reduce the cost of the LookAhead procedure, look-aheads could be restricted
to a subset of the free variables. The subset (denoted by P) is selected by the
PreSelect procedure - see Section 5.3.3. However, if |P| is too small, this could
decrease overall performance, since less failed literals will be detected and possibly
a less effective decision variable is selected.

Various forms of additional look-ahead reasoning can be applied to F to either
reduce its size by assigning forced literals or to further constrain it by adding
learned clauses. Four kinds of additional reasoning are discussed in Section 5.4.

Algorithm 5.3 LookAhead(F)

1: P := Preselect(F)
2: repeat

3: for all variables xi ∈ P do

4: F := LookAheadReasoning(F , x)
5: if empty clause ∈ F [x = 0] and empty clause ∈ F [x = 1] then

6: return < F [x = 0]; ∗ >
7: else if empty clause ∈ F [x = 0] then

8: F := F [x = 1]
9: else if empty clause ∈ F [x = 1] then

10: F := F [x = 0]
11: else

12: H(xi) = DecisionHeuristic(F , F [x = 0], F [x = 1])
13: end if

14: end for

15: until nothing (important) has been learned
16: return < F ; xi with greatest H(xi) >

Algorithm 5.3 shows the LookAhead procedure with these enhancements.
Mostly the procedure will return a simplified formula F and a decision variable
xdecision. Except in two cases this procedure returns no decision variable: First, if
the procedure detects that the formula is unsatisfiable by failed literals. Second,
if all (pre-selected) variables are assigned. In the latter case, we either detected
a satisfying assignment or we need to restart the LookAhead procedure with a
new set of pre-selected variables.

Detection of failed literals or other look-ahead reasoning that change F , can
influence the Diff values. Also the propagation of a forced literal could result

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 161 — #7
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 161

in the failure of the look-head on other literals. Therefore, to improve both the
accuracy of the decision heuristic and to increase the number of detected failed
literals, the LookAhead procedure can be iterated until no (important) facts
are learned (in the last iteration).

The unit propagation part within the LookAhead procedure is relatively
the most costly aspect of this architecture. Heuristics aside, performance could
be improved by reduction of these costs. Section 5.5 discusses three optimization
techniques.

5.2.2. History of Look-Ahead Sat Solvers

The Böhm solver [BS96] could be considered as the first look-ahead SAT solver. In
each node it selects the variable that occurs most frequently in the shortest active
(not satisfied) clauses. Although no look-aheads are performed, it uses eager
data-structures which are common in look-ahead SAT solvers: Two dimensional
linked lists are used to cheaply compute the occurences in acitve clauses. This
data-structure is also used in the OKsolver. The Böhm solver won the first SAT
competition in 1991/1992 [BKB92].

The first Sat solver with a LookAhead procedure, posit, was developed by
Freeman [Fre95] in 1995. It already contained aspects of the important heuristics
used in the “modern” look-ahead Sat solvers:

• Decision variables are selected by a Diff heuristic that measures the re-
duction of free variables. The MixDiff heuristic used in posit, is still used
in most look-ahead Sat solvers. Let L := Diff(F , F [x = 0]) and R :=
Diff(F , F [x = 1]) then MixDiff is computed by 1024 · LR + L + R.
The product is selected to create a balanced search-tree. The addition is
for tie-breaking purposes. The factor 1024, although seemingly arbitrary,
gives priority to the product (balancedness of the emerging search-tree).

• A direction heuristic is used to improve the performance on satisfiable
instances: Using a simple heuristic, it estimates the relative costs of solving
F [x = 0] and F [x = 1]. The smallest one is preferred as first branch.

• Variables in posit are pre-selected for the LookAhead procedure using
three principles: First, important variables (ones with a high estimated
MixDiff) are selected to get an effective decision variable. Second, literals
that occur frequently negated in binary clauses are selected (so possibly not
their complement) as candidate failed literals. Third, many variables are
selected near the root of the tree, because here, accurate heuristics and
failed literals have more impact on the size of the tree.

Results on hard random 3-Sat formulae were boosted by satz. This solver was
developed by Li and Anbulagan in 1997. All heuristics were optimized for these
benchmarks:

• The Diff heuristic measures the newly created binary clauses in a weighted
manner based on the literals in these binary clauses. This heuristic is called
weighted binaries heuristic and is discussed in Section 5.3.1.2. The same
MixDiff heuristic is used as in posit.

• No direction heuristics are used. F [xdecision = 1] is always preferred.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 162 — #8
i

i

i

i

i

i

162 Chapter 5. Look-Ahead Based SAT Solvers

• Variables are pre-selected using the propz heuristic [LA97a] - see Sec-
tion 5.3.3.1. On random 3-Sat formulae, it pre-selects most free variables
near the root of the search-tree. As the tree deepens, the number of selected
variables decreases.

In 1999 Li added a DoubleLook procedure to satz and further reduced the
size of the search-tree to solve random formulae [Li99]. This procedure - see
Section 5.4.3 - attempts to detect more failed literals by also performing some
look-aheads on a second level of propagation: If during the look-ahead on x

more than a certain number of new binary clauses are created, then additional
look-aheads are performed on the reduced formula F [x = 1] to check whether it
is unsatisfiable. The parameter (called ∆trigger) which expresses the number of
new binary clauses to trigger the DoubleLook procedure is fixed to 65 based
on experiments on hard random 3-Sat formulae. Performance clearly improves
using this setting, while on many structured benchmarks it results in a slowdown:
The procedure is executed too frequently.

To exploit the presence of so-called equivalence clauses in many benchmarks,
Li [Li00] created a special version of satz – called eqsatz – which uses equivalence
reasoning. During the look-ahead phase, it searches binary equivalences xi ↔ xj

in the reduced formulae F [x = 0] and F [x = 1]. Using five inference rules,
it reasons about the detected equivalences. Due to this equivalence reasoning,
eqsatz was the first Sat solver to solve the hard parity32 benchmarks [CKS95]
without performing Gaussian elimination on the detected equivalence clauses.

Starting from 1998, Oliver Kullmann developed the OKsolver, motivation by
the idea to create a “pure” look-ahead Sat solver [Kul02]. The heuristics are
kept clean. They are not stuffed with magic constants:

• The Diff heuristic in OKsolver measures the newly created clauses in a
weighted manner - based on the size on the new clauses. For each of
the used weights a separate experiment has been performed. This clause
reduction heuristic is discussed in Section 5.3.1.1. The MixDiff uses the
product Diff(F , F [x = 0]) · Diff(F , F [x = 1]) which is based on the
τ -function [KL99].

• The direction heuristics prefer F [xdecision = 0] or F [xdecision = 1] which is
probabilistically the most satisfiable. Details are shown in Section 5.3.2.

• No pre-selection heuristics are used.

Besides the clean heuristics, OKsolver also adds some reasoning to the look-ahead
architecture:

• Local Learning3: If the look-ahead on x assigns y to true, then we learn
x → y. This can be stored as binary clause ¬x ∨ y. These learned binary
clauses are valid under the partial assignment. This means that they should
be removed while backtracking.

• Autarky Reasoning: If during the look-ahead on x no new clauses are
created then an autarky is detected. This means that F [x = 1] is satisfi-
ability equivalent with F . Therefore, x can be freely assigned to true. If

3Local learning is an optinal feature in the OKsolver which was turned off in the version
submitted to SAT 2002.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 163 — #9
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 163

only one new clause is created, then an 1-autarky is detected. In this case,
several local learned binary clauses can be added. Details are presented in
Section 5.4.2.

• Backjumping: While backtracking, the OKsolver maintains a list of the
variables that were responsible for detected conflicts. If a decision variable
does not occur in the list, the second branch can be skipped. This technique
has the same effect as the ones used in conflict-driven solvers.

To maximize the number of learned facts, the LookAhead procedure is iter-
ated until in the last iteration no new forced literals have been detected and no
new binary clauses have been added. During the first Sat competition4 (2002),
OKsolver won both divisions of random k-Sat benchmarks.

The first version of march, developed by Heule et al. in 2002 was inspired by
satz and applied most of its features. The most significant difference was a pre-
processing technique which translated any formula to 3-Sat. The updated version
of 2003, march eq, was modified to become a look-ahead Sat solver for general
purposes. New techniques were added to increase performance on structured
instances, while still being competitive on random formulae. Three techniques
have been added to improve efficiency. Due to some overhead these techniques
are cost neutral on random formulae, but generate significant speed-ups on many
structured instances:

• The binary and non-binary clauses of the formula are stored in separate
data-structures. This reduces the required memory (especially on struc-
tured benchmarks) and facilitates a more efficient unit propagation - see
Section 5.5.1.

• Before entering the LookAhead procedure, all inactive (satisfied) clauses
are removed from the data-structures. This reduces the costs os unit prop-
agation during this procedure - see Section 5.5.2.

• By building implication trees of the binary clauses containing two pre-
selected variables, a lot of redundancy in the LookAhead procedure can
be tackled - see Section 5.5.3.

Also equivalence reasoning was added. Instead of searching for equivalence clauses
in all reduced formulae, march eq only extracts them from the input formula.
They are stored in a separate data-structure to implement a specialized unit prop-
agation procedure. The solver won two divisions of crafted benchmarks during
Sat 2004.

The kcnfs solver by Dubois and Dequen, developed in 2004, is in many aspects
similar to satz. However, it features some important improvements with respect
to hard random k-Sat formulae:

• The most effective modification is a minor one. Like satz, the Diff heuris-
tic measures the newly created binary clauses in a weighted manner -
based on occurrences of the variables in these clauses. However, instead of
adding the weighted literals, they are multiplied per binary clause - see Sec-
tion 5.3.1.3. This backbone search heuristic (BSH) significantly improves
the performance on random k-Sat formulae.

4see www.satcompetition.org

www.satcompetition.org

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 164 — #10
i

i

i

i

i

i

164 Chapter 5. Look-Ahead Based SAT Solvers

• The implementation is optimized for efficiency on random k-Sat formulae.
• Normalization has been developed for BSH, such that it can measure newly

created clauses of any size. This is required for fast performance on random
k-Sat formulae with k > 3.

The kcnfs solver performs very strong on random formulae on the Sat competi-
tions. It won one random division during both Sat 2003 and Sat 2004, and even
two random divisions during Sat 2005.

In 2005 two adaptive heuristics were added to march eq, resulting in march dl:

• It was observed [HvM06a] that there is some correlation between the num-
ber of failed literals and the optimal number of pre-selected free variables.
Based on this observation, an adaptive heuristic was added which aims to
converge to the optimal value.

• An adaptive algorithm for the DoubleLook procedure [HvM07] has been
added to march eq. It modifies ∆trigger after each look-ahead. In contrast
to earlier implementations of the DoubleLook procedure, it now reduces
the computational costs on almost all formulae.

5.3. Heuristics

As the previous section showed, the look-ahead architecture enables one to invoke
many heuristic features. Research tends to focus on three main categories of
heuristics, which we recall here:

• Difference heuristics: To measure the difference between the formulae
before and after a look-ahead. The quality of the used difference heuristic
influences the actual impact of the decision variable.

• Direction heuristics: Given a decision variable xdecision, one can choose
whether to examine first the positive branch F [xdecision = 1] or the neg-
ative branch F [xdecision = 0]. Effective direction heuristics improve the
performance on satisfiable formulae.

• Pre-selection heuristics: To reduce the computational costs, look-ahead
can be restricted to a subset of the variables. As a possible negative conse-
quence, however, a smaller pre-selected set of variables may result in fewer
detected failed literals and a less effective decision variable.

5.3.1. Difference heuristics

This section covers the branching heuristics used in look-ahead Sat solvers. A
general description of these heuristics is offered in Chapter 7. To measure the
difference between a formula and its reduction after a look-ahead (in short Diff),
various kinds of statistics can be applied. For example: The reduction of the
number of free variables, the reduction of the number of clauses, the reduced size
of clauses, or any combination. Posit uses the reduced number of free variables as
Diff [Fre95]. All look-ahead Sat solvers which participated in the Sat competi-
tions use a Diff based on newly created (reduced, but not satisfied) clauses. The
set of new clauses created during the look-ahead on x is denoted by F [x = 1]\F .

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 165 — #11
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 165

All these heuristics use weights to quantify the relative importance of clauses of
a certain size. The importance of a clause of size k is denoted by γk and the
subformula of F which contains only the clauses of size k is denoted by Fk. This
section discusses and compares three main Diff heuristics.

5.3.1.1. Clause reduction heuristic

The Diff implemented by Kullmann in OKsolver [Kul02] uses only the γk weights
and is called clause reduction heuristic5 (CRH):

CRH(xi) :=
∑

k≥2

γk · |F [xi = 1]k \ F| with

γ2 := 1, γ3 := 0.2, γ4 := 0.05, γ5 := 0.01, γ6 := 0.003

γk := 20.4514 · 0.218673k for k ≥ 7

These constants γk for k = 3, 4, 5, 6 are the result of performance optimization of
the OKsolver on random k-Sat formulae, while the formula for k ≥ 7 is the result
of linear regression [Kul02].

5.3.1.2. Weighted binaries heuristic

Weighted binaries heuristic (WBH) is developed by Li and Anbulagan [LA97b]
and applied in the solver satz. Each variable is weighted (both positive and
negative) based on its occurrences in the formula. Let #(¬x) denote the number
of occurences of literal x. Each new binary clause x ∨ y is weighted using the
sum of the weights of their complementary literals. The sum #(¬x) + #(¬y)
expresses the number of clauses on which resolution can be done with x ∨ y.

Occurrences in a clause of size k is valued 5k−3. This weighting function
followed from performance optimization of satz over random formulae. Notice
that as in the OKsolver (i.e. γk in CRH) clauses of size k + 1 are about 1

5 of the
importance of clauses of size k.

wWBH(xi) :=
∑

k≥2

γk · #k(xi) with γk := 5k−3

WBH(xi) :=
∑

(x∨y)∈{F [xi=1]2\F2}

(

wWBH(¬x) + wWBH(¬y)
)

5.3.1.3. Backbone search heuristic

Backbone search heuristic (BSH) was developed by Dubois and Dequen [DD01].
This heuristic is inspired by the concept of the backbone of a formula - the set of
variables that has a fixed truth value in all assignments satisfying the maximum

5This heuristic is also known as MNC and is further discussed in Section 7.7.4.1.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 166 — #12
i

i

i

i

i

i

166 Chapter 5. Look-Ahead Based SAT Solvers

number of clauses [MZK+99]. Like WBH, variables are weighted based on their
occurrences in clauses of various sizes. Clauses of size k + 1 are considered only
half6 as important than clauses of size k.

The most influential difference between WBH and BSH is that the latter
multiplies the weights of the literals in the newly created binary clauses - while
the former adds them. For every new clause x ∨ y, the product #(¬x) · #(¬y)
expresses the number of resolvents that can be created due to the new clause.

wBSH(xi) :=
∑

k≥2

γk · #k(xi) with γk := 2k−3

BSH(xi) :=
∑

(x∨y)∈F [xi=1]2\F

(

wBSH(¬x) · wBSH(¬y)
)

Notice that both wBSH(xi) and BSH(xi) express the importance of literal xi.
Since BSH(xi) is far more costly to compute than wBSH(xi), BSH could only
improve performance if it proves to be a better heuristic than wBSH. So far, this
claim only holds for random formulae.

Based on the assumption that BSH(xi) is better than wBSH(xi), Dubois and
Dequen [DD01] propose to iterate the above by using BSH(xi) instead of wBSH(xi)
for the second iteration to improve the accuracy of the heuristic. This can be
repeated by using the BSH(xi) values of iteration i (with i > 2) to compute
BSH(xi) of iteration i + 1. However, iterating BSH makes it much more costly.
In general, performing only a single iteration is optimal in terms of solving time.

In [DD03] Dubois and Dequen offer a normalization procedure for BSH such
that it weighs all newly created clauses - instead of only the binary ones. The
normalization is required for fast performances on random k-Sat formula with
k > 3. Backbone Search Renormalized Heuristic (in short BSRH) consists of two
additional aspects: 1) Smaller clauses are more heavier using the γk weights, and
2) the wBSH values to compute BSH(xi) are renormalized, by dividing them by
the average weight of all literals in F [xi = 1] \ F - denoted by µBSH(xi).

µBSH :=

∑

C∈F [xi=1]\F

∑

x∈C wBSH(¬x)
∑

C∈F [xi=1]\F |C|

BSRH(xi) :=
∑

C∈F [xi=1]\F

(

γ|C| ·
∏

x∈C

wBSH(¬x)

µBSH(xi)

)

Similar to BSH, BSRH can be iterated to improve accuracy.

6Although the various descriptions of the heuristic [DD01, DD03] use a factor 2, the actual
implementation of the heuristic in kcnfs (see http://www.laria.u-picardie.fr/~dequen/sat/)
also uses factor 5.

http://www.laria.u-picardie.fr/~dequen/sat/

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 167 — #13
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 167

5.3.1.4. Comparison of Diff heuristics

Example 5.3.1. Consider the unsatisfiable 3-Sat formula Fheuristic below:

Fheuristic = (¬x1 ∨ x2 ∨ ¬x6) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x7) ∧

(¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧

(x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x5) ∧ (¬x2 ∨ x3 ∨ ¬x5) ∧

(x1 ∨ x2 ∨ x6) ∧ (x1 ∨ x2 ∨ x7) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x2 ∨ x4 ∨ x5)

Table 5.1 compares the heuristic values of look-aheads on Fheuristic using the
three heuristics CRW, WBH, and BSH. Notice that CRH prefers x2 as decision
variable, while WBH and BSH prefer x3. The latter choice will result in a smaller
search-tree. Between WBH and BSH the preferred ordering differs as well. For
BSH, variables x4 and x5 are relatively more important than for WBH.

BSH is the most effective heuristic on random k-Sat formulae. The relative
effectiveness of these heuristics on structured instances is not well studied yet.

Table 5.1. Comparison between the heuristic values of the look-ahead on the variables in

Fheuristic using CRH, WBH and BSH. The product is used as MixDiff.

#(xi) #(¬xi) MixDiff(CRH) MixDiff(WBH) MixDiff(BSH)

x1 4 4 4 · 4 = 16 24 · 21 = 504 30 · 27 = 810

x2 6 3 3 · 6 = 18 17 · 33 = 516 20 · 40 = 800

x3 3 4 4 · 3 = 12 30 · 23 = 690 56 · 36 = 2016

x4 4 3 3 · 4 = 12 21 · 24 = 504 36 · 36 = 1296

x5 2 2 2 · 2 = 4 15 · 15 = 225 27 · 27 = 729

x6 1 1 1 · 1 = 1 7 · 7 = 49 12 · 12 = 144

x7 1 1 1 · 1 = 1 10 · 7 = 70 24 · 12 = 288

5.3.2. Direction heuristics

Various state-of-the-art satisfiability (Sat) solvers use direction heuristics to pre-
dict the sign of the decision variables: These heuristics choose, after the selection
of the decision variable, which Boolean value is examined first. Direction heuris-
tics are in theory very powerful: If always the correct Boolean value is chosen,
satisfiable formulae would be solved without backtracking. Moreover, existence
of perfect direction heuristics (computable in polynomial time) would prove that
P = NP . These heuristics are also discussed in Section 7.9.

Although very powerful in theory, it is difficult to formulate effective direction
heuristics in practice. Look-ahead Sat solvers even use complementary strategies
to select the first branch - see Section 5.3.2.1.

Direction heuristics may bias the distribution of solutions in the search-tree.
For instance, while using march or kcnfs, such a biased distribution is observed
on hard random 3-Sat formulae. A biased distribution can be used to replace
the DPLL depth-first search by a search that visits subtrees in order of increasing
likelihood of containing a solution - see Section 5.3.2.2.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 168 — #14
i

i

i

i

i

i

168 Chapter 5. Look-Ahead Based SAT Solvers

positive left branch

positive right branch

negative left branch

positive right branch

x8

x1

x5

x3

x5

x7

x1

x8

x3

x7

x8

x9

x3

x6

x2

x3

x7

x5

x6

x2

x1

x6

x9

x7

x2

x4

x3

x1

x2

x5

x9

x1

Figure 5.4. Complete binary search-tree (DPLL) for a formula with nine variables (x1, . . . , x9).

The decision variables are shown inside the internal nodes. A node is colored black if all child

nodes are unsatisfiable, and white otherwise. The type of edge shows whether it is visited

first (left branch), visited last (right branch), its decision variable is assigned to true (positive

branch), or its decision variable is assigned to false (negative branch).

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 169 — #15
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 169

The search-tree of a DPLL-based Sat solver can be visualized as a binary
search-tree, see Figure 5.4. This figure shows such a tree with decision variables
drawn in the internal nodes. Edges show the type of each branch. We will refer
to the left branch as the subformula that is visited first. Consequently, the right
branch refers to the one examined later. A black leaf refers to an unsatisfiable
dead end, while a white leaf indicates that a satisfying assignment has been found.
An internal node is colored black in case both its children are black, and white
otherwise. For instance, at depth 4 of this search-tree, 3 nodes are colored white.
This means that at depth 4, 3 subtrees contain a solution.

5.3.2.1. Complementary strategies

A wide range of direction heuristics is used in look-ahead Sat solvers:

• kcnfs7 selects F [xdecision = 1] if xdecision occurs more frequently in F than
¬xdecision. Otherwise it selects F [xdecision = 0].

• march selects F [xdecision = 1] if Diff(F ,F [xdecision = 1]) is smaller than
Diff(F ,F [xdecision = 0]), and F [xdecision = 0] otherwise [HDvZvM04].

• OKsolver selects the subformula with the smallest probability that a random
assignment will falsify a random formula of the same size [Kul02]. It prefers
the minimum sum of

∑

k≥2

−|Fk| · ln(1 − 2−k) (5.1)

• posit selects F [xdecision = 0] if xdecision occurs more often than ¬xdecision in
the shortest clauses of F . Otherwise it selects F [xdecision = 1] [Fre95].

• satz8 does not use direction heuristics and starts with F [xdecision = 1].

These heuristics can be divided into two strategies:
A) Estimate which subformula will require the least computational time.
This strategy assumes that it is too hard to predict whether a subformula is sat-
isfiable. Therefore, if both subformulae have the same expectation of containing
a solution, you will find a solution faster by starting with the one that requires
less computational time. From the above solvers, posit uses this strategy.

Notice that conflict-driven SAT solvers may prefer this strategy to focus on
the most unsatisfiable subformula. This may result in an early conflict, and
possibly a short conflict clause. However, since the current look-ahead SAT solvers
do not add conflict clauses, this argument is not applicable for these solvers.
B) Estimate which subformula has the highest probability of being satisfiable.
If a formula is satisfiable, then it is expected that the subformula which is heuris-
tically the most satisfiable will be your best bet. The other subformula may be
unsatisfiable and - more importantly - a waste of time. The solvers kcnfs, march,
and OKsolver use this strategy.

Generally these two strategies are complementary: The subformula which can be
solved with relatively less computational effort is probably the one which is more
constraint and therefore has a smaller probability being satisfiable. In practice,

7version 2006
8version 2.15.2

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 170 — #16
i

i

i

i

i

i

170 Chapter 5. Look-Ahead Based SAT Solvers

for example, satisfiable hard random k-Sat formulae are solved faster by using
a direction heuristic based on strategy B, while on various structured satisfiable
instances strategy A is more successful.

The balancedness of the DPLL search-tree could hint which is the best strat-
egy to use: In a balanced search-tree, solving F [xdecision = 0] requires almost as
much effort as solving F [xdecision = 1] for each decision variable xdecision. In this
case, strategy A seems less appealing. Since look-ahead solvers produce a bal-
anced search tree on hard random k-Sat formulae, strategy B would be preferred.

On the other hand, in an unbalanced search-tree one could get lucky using
strategy A which would be therefore preferred. On many structured instances
look-ahead Sat solvers produce an unbalanced search-tree - although the Mix-

Diff heuristic attempts to achieve a balanced search-tree.

Based on this explanation, march ks uses both strategies: Strategy B is used
(as implemented in march dl) in case Diff(F ,F [x = 0]) and Diff(F ,F [x = 1])
are comparable. Otherwise, strategy A is used by preferring the complementary
branch which would have been selected by march dl. In march ks, “comparable”

is implemented as 0.1 ≤ Diff(F ,F [x=0])
Diff(F ,F [x=1]) ≤ 10.

5.3.2.2. Distribution of solutions

Given a family of benchmark instances, we can observe the effectiveness of the
direction heuristic used in a certain solver on that particular family. The observa-
tion can be illustrated as follows: Consider the subtrees at depth d of the DPLL
search-tree. Subtrees are denoted by Ti with i = {1, ..., 2d} and are numbered in
depth-first order. The histogram showing the number of formulae in the given
family containing at least one solution in Ti is called a solution distribution plot.

Figures 5.5 and 5.6 show solution distribution plots at depth 12 for march dl

and kcnfs respectively on 3000 random 3-Sat formulae with 350 variables and
1491 clauses (at phase transition density). The observed distribution is clearly
biased for both solvers. The distribution observed using march dl is more biased
than the one using kcnfs. Based on these plots, one could conclude that the
direction heuristics used in march dl are more effective for the instances at hand.

For both solvers, the number of formulae with at least one solution in Ti is
highly related to the number of left branches that is required to reach Ti. With
this in mind, the DPLL depth first search can be replaced [HvM06b] by a search
strategy that, given a jump depth, visits the subtrees at that depth in the order of
required left branches. Using jump depth 12, first subtree T1 is visit (twelve left
branches, zero right branches), followed by subtrees T2, T3, T5, T9, ..., T2049 (eleven
left branches, one right branch), etc. Random satisfiable formulae of the same
size are on average solved much faster using modified DPLL search.

Notice that for conflict-driven solvers this kind of solution distribution plots
could not be made. The most important reason is that there is no clear left
and right branch, because conflict clauses assign former decision variables to the
complement of the preferred truth value. Another difficulty to construct these
plots is the use of restarts in conflict-driven solvers. Finally, the use of lazy data-
structures makes it very expensive to apply a direction heuristic that requires
much statistical data.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 171 — #17
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 171

0

2

4

6

8

10

12

T212T211T210T29T1

0

100

200

300

400

500

600

700

Figure 5.5. Solution distribution plot with march dl showing for each subtree Ti at depth 12

the number of formulae that have at least one solution in that subtree. Used 3000 random 3-Sat

formulae with 350 variables and 1491 clauses.

5.3.3. Pre-selection heuristics

Overall performance can be gained or lost by performing look-ahead on a subset
of the free variables in each node of the DPLL-tree: Gains are achieved by the
reduction of computational costs, while losses are the result of either the inabil-
ity of the pre-selection heuristics (heuristics that determine the set of variables
to enter the look-ahead phase) to select effective decision variables or to predict
candidate failed literals. When look-ahead is performed on a subset of the vari-
ables, only a subset of the failed literals is most likely detected. Depending on
the formula, this could increase the size of the DPLL-tree. This section describes
the two most commonly used pre-selection heuristics in look-ahead Sat solvers:
propz and clause reduction approximation.

5.3.3.1. propz

Li [LA97a] developed the propz heuristic for his solver satz, which is also used in
kcnfs. It pre-selects variables based on their occurrences in binary clauses. The
propz heuristic is developed to perform faster on hard random k-Sat formulae.
Near the root of the search-tree it pre-selects all free variables. From a certain
depth on, it pre-selects only variables that occur both positive and negative in
binary clauses. It always pre-selects a lower bound of 10 variables.

Although this heuristic is effective on hard random k-Sat formulae, its behav-
ior on structured instances is not clear. On some benchmarks it will pre-select all
free variables in all nodes of the search-tree, while on others it always pre-selects
slightly more variables than the lower bound used.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 172 — #18
i

i

i

i

i

i

172 Chapter 5. Look-Ahead Based SAT Solvers

0

2

4

6

8

10

12

T212T211T210T29T1

0

20

40

60

80

100

120

140

160

180

Figure 5.6. Solution distribution plot with kcnfs showing for each subtree Ti at depth 12 the

number of formulae that have at least one solution in that subtree. Used 3000 random 3-Sat

formulae with 350 variables and 1491 clauses.

5.3.3.2. Clause reduction approximation

In march the pre-selection heuristics are based on an approximation of a decision
heuristic that counts the number of newly created clauses, called clause reduc-
tion approximation (CRA). It uses the sizes of all clauses in the formula and
is therefore more costly than propz. First, the set of variables to be assigned
during look-ahead on x is approximated. All variables that occur with ¬x in
binary clauses are used as approximated set. Second, if yi occurs in this set than
all n-ary clauses in which ¬yi occurs will be reduced. This is an approximation
of the number of newly created clauses, because some of the reduced ones will
be satisfied. Third, the product is used as MixDiff. Let #>2(xi) denote the
number of occurrences of literal xi in clauses with size > 2. For all free variables
CRA is computed as:

CRA(x) :=
(

∑

x∨yi∈F

#>2(¬yi)
)

·
(

∑

¬x∨yi∈F

#>2(¬yi)
)

(5.2)

Variables with the highest CRA scores are pre-selected for the LookAhead pro-
cedure. Once the CRA scores are computed, one has to determine how many
variables should be pre-selected. The optimal number varies heavily form bench-
mark to benchmark and from node to node in the search-tree. Early march

versions used a fraction of the original number of variables. Most versions used
10% of the number of variables, which is refered to as Rank10%. Later versions
use an adaptive heuristic discussed in the next paragraph.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 173 — #19
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 173

Table 5.2. Average number of variables selected for the LookAhead procedure by Rank10%

and propz for 300 variables and 1275 clauses random 3-Sat problems.

depth #freeVars propz Rank10% depth #freeVars propz Rank10%

1 298.24 298.24 30 11 264.55 26.81 30

2 296.52 296.52 30 12 260.53 21.55 30

3 294.92 293.89 30 13 256.79 19.80 30

4 292.44 292.21 30 14 253.28 19.24 30

5 288.60 280.04 30 15 249.96 19.16 30

6 285.36 252.14 30 16 246.77 19.28 30

7 281.68 192.82 30 17 243.68 19.57 30

8 277.54 125.13 30 18 240.68 19.97 30

9 273.17 71.51 30 19 237.73 20.46 30

10 268.76 40.65 30 20 234.82 20.97 30

5.3.3.3. Adaptive Ranking

As observed in [HDvZvM04], the optimal number of pre-selected variables is
closely related to the number of detected failed literals: When relatively many
failed literals were detected, a larger pre-selected set appeared optimal. Let
#failedi be the number of detected failed literals in node i. To exploit this cor-
relation, the average number of detected failed literals is used as an indicator for
the (maximum) size of the pre-selected set in node n (denoted by RankAdaptn):

RankAdaptn := L +
S

n

n
∑

i=1

#failedi (5.3)

In the above, parameter L refers to the lower bound of RankAdaptn (namely
when the average tends to zero) and S is a parameter modelling the importance
of failed literals. March eq uses L := 5 and S := 7 based on experiments on
structured and random benchmarks. Notice that the above adaptive pre-selection
heuristics are heavily influenced by the decision heuristics - which in turn are also
affected by these heuristics.

Generally RankAdapt select a subset of the free variables, but in some cases
- due to many detected failed literals - all free variables are selected. It may occur
that, during the LookAhead procedure, all selected variables are forced. In that
case a new set of variables is pre-selected.

5.4. Additional Reasoning

Selection of decision variables by performing many look-aheads is very expen-
sive compared to alternative decision heuristics. As such, this could hardly be
considered as an advantage. However, since the decision heuristics are already
costly, some additional reasoning is relatively cheap. This section presents various
techniques that can be added to the LookAhead procedure in order to improve
overall performance.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 174 — #20
i

i

i

i

i

i

174 Chapter 5. Look-Ahead Based SAT Solvers

Look-ahead on variables which will not result in a conflict appears only useful
to determine which variable has the highest decision heuristic value. However,
by applying some additional reasoning, look-ahead on some variables can also be
used to reduce the formula (like failed literals). Look-ahead on the other variables
can be used to add resolvents (learned clauses) to further constrain the formula.
Three kinds of additional reasoning are used in look-ahead Sat solvers for these
purposes: Local learning (Section 5.4.1), autarky detection (Section 5.4.2), and
double look-ahead (Section 5.4.3).

5.4.1. Local learning

During the look-ahead on x, other variables yi can be assigned by unit prop-
agation. Some due to the presence of binary clauses ¬x ∨ (¬)yi, called direct
implications. Variables assigned by other clauses are called indirect implications.
For those variables yi that are assigned to true (or false) by a look-ahead on x

though indirect implications, a binary clause ¬x ∨ yi (or ¬x ∨ ¬yi, respectively)
can be added to the formula. This is referred to as local learning. As the name
suggests, these clauses are not globally valid and should therefore be removed
while backtracking.

Example 5.4.1. Consider the formula Flearning below:

Flearning := (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x6) ∧
(¬x1 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x6) ∧ (x4 ∨ x5 ∨ x6) ∧ (x5 ∨ ¬x6)

Some look-aheads on literals (¬)xi will result in unit clauses, thereby assigning
other variables. These assignments are listed below:

[x1 := 0] → {x3=1, x6=0} [x4 := 0] → {}
[x1 := 1] → {x2=1, x3=1, x4=1} [x4 := 1] → {}
[x2 := 0] → {x1=0, x3=1, x6=0} [x5 := 0] → {x4=1, x6=0}
[x2 := 1] → {} [x5 := 1] → {}
[x3 := 0] → {} [x6 := 0] → {}
[x3 := 1] → {} [x6 := 1] → {x1=1, x2=1, x3=1, x4=1, x5=1}

Eight of the above assignments follow from indirect implications. Therefore, these
can be added to Flearning:

x1 ∨ x3 ¬x1 ∨ x4 x2 ∨ ¬x6 x4 ∨ x5

¬x1 ∨ x3 x2 ∨ ¬x3 x3 ∨ ¬x6 x4 ∨ ¬x6

In the example above, the number of binary clauses that could be added by
local learning is equal to the number of original clauses in Flearning. In most real
world examples, the number of local learned clauses is significantly larger than the
number of original clauses. Therefore, adding all these binary clauses is generally
not useful because it slows down propagation.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 175 — #21
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 175

5.4.1.1. Necessary assignments

A cheap technique to reduce the size of the formula is detection of necessary
assignments: If the look-ahead on xi assigns xj to true and the look-ahead on
¬xi assigns xj to true then the assignment xj to true is referred to as necessary.
This technique requires only the short storage of implications. First, store all
implications while performing look-ahead on xi. Then continue with look-ahead
on ¬xi and check for each implication whether it is in the stored list. All matches
are necessary assignments. After look-ahead on ¬xi the stored implications can
be removed.

In Example 5.4.1, variable x3 is necessarily assigned to true because it is
implied by both x1 and ¬x1. Necessary assignments can also be detected by
adding local learned clauses: When these clauses are added, look-ahead on the
complement of the necessary assignment will fail. Notice that by searching for
necessary assignments, variables which are a not in the pre-selected set can be
forced to an assignment.

Searching for necessary assignments is a simplified technique of learning in
the St̊almarck’s proof procedure [SS98]. This patented procedure learns the in-
tersection of the new clauses in the reduced formulae (after look-ahead on xi

and ¬xi). Necessary assignments are only the new unit clauses in this inter-
section. One could learn even more by adding clauses of size 2 and larger, but
none of the current look-ahead Sat solvers adds these clauses because computing
them is quite expensive. However, the HeerHugo Sat solver [GW00], inspired
the the St̊almarck’s proof procedure, performs the “full” learning. The theory
regarding these and other strengthenings of unit clause propagation are discussed
in [Kul99a, Kul04].

5.4.1.2. Constraint resolvents

The concept of necessary assignments is not sufficient to detect all forced literals
by using local learning. For example, after adding the learned clauses ¬x1 ∨ x4

and x4 ∨ x5, look-ahead on ¬x4 will fail, forcing x4 to be assigned to true. Now,
the question arises: Which local learned clauses should be added to detect all
forced literals?

Local learned clauses are useful when the number of assigned variables is
increased during look-ahead on the complement of one of its literals. For instance,
given a formula with clauses x1∨x2 and ¬x2∨x3. The local learned clause x1∨x3

is not useful because look-ahead on ¬x1 would already assign x3 to true and look-
ahead on ¬x3 would already assign x1 to true.

However, given a formula with clauses x1 ∨ x2 and x1 ∨ ¬x2 ∨ x3 then local
learned clause x1 ∨ x3 is useful: Only after adding this clause, look-ahead on
¬x3 will assign x1 to true. These useful local learned clauses are referred to as
constraint resolvents [HDvZvM04].

In Example 5.4.1, all local learned clauses except x2 ∨ ¬x6 are constraint
resolvents. Yet, in practice, only a small subset of the local learned clauses are
constraint resolvents. In Section 5.5.1 a technique is explained to efficiently detect
constaints resolvents.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 176 — #22
i

i

i

i

i

i

176 Chapter 5. Look-Ahead Based SAT Solvers

Constraint resolvents and heuristics. Pre-selection heuristics rank variables
based on their occurrences in binary clauses - see Section 5.3.3. Addition of
constraint resolvents (or local learned clauses in general) will increase the occur-
rences in binary clauses of variables in the pre-selected set in particular. So, once
variables are pre-selected, their rank will rise, increasing the chances of being pre-
selected again in a next node. Therefore, it becomes harder for “new” variables
to enter the look-ahead phase.

5.4.2. Autarky Reasoning

An autarky (or autark assignment) is a partial assignment ϕ that satisfies all
clauses that are “touched” by ϕ. So, all satisfying assignments are autark assign-
ments. Autarkies that do not satisfy all clauses can be used to reduce the size
of the formula: Let Ftouched be the clauses in F that are satisfied by an autarky.
The remaining clauses F∗ := F \ Ftouched are satisfiability equivalent with F
- see Chapter 11. So, if we detect an autark assignment, we can reduce F by
removing all clauses in Ftouched.

5.4.2.1. Pure literals

The smallest example of an autarky is a pure literal: A literal which negation
does not occur in the formula. Consider the example formula below:

Fpure literal := (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3)

Variable x2 occurs only negated in this formula - making ¬x2 a pure literal.
Assigning x2 to false will therefore only satisfy clauses. Under this assignment
the only clause left is (¬x1 ∨ x3). Now both ¬x1 and x3 are pure literals. So by
assigning a pure literal to true could make other literals pure.

5.4.2.2. Autarky detection by look-ahead

Look-aheads can also be used to detect autarkies. Whether a look-ahead resulted
in an autark assignment requires a check that all reduced clauses became satis-
fied. Recall that the CRH and the BSH look-ahead evaluation heuristics count
(and weight, respectively) the newly created clauses. While using these heuristics,
an autarky detection check can be computed efficiently: All reduced clauses are
satisfied if and only if their heuristic value is 0.

Example 5.4.2. Consider the formula Fautarky below.

Fautarky := (x1 ∨ ¬x2) ∧ (¬x1 ∨ x5) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧
(x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ x5)

The heuristic values of the CRH look-ahead evaluation heuristic (in this case the
number of newly created binary clauses) of all possible look-aheads on Fautarky

are shown in Table 5.3. Both the look-aheads on ¬x3 and ¬x5 result in a heuristic
value of 0. The first represents the autark assignment ϕ = {x3 = 0, x4 = 1}, and
the second represents the autarky assignment ϕ = {x1 = x2 = x5 = 0}.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 177 — #23
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 177

Table 5.3. Number of new binary clauses after a look-ahead on xi on Fautarky . For this formula

these values equal CRH(xi) because the largest clause has length 3.

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 x5 ¬x5

CRH(xi) 2 2 1 2 2 0 1 2 1 0

In general, look-ahead Sat solvers do not check whether a look-ahead satisfies
all remaining clauses - thereby detecting a satisfying assignment. By detecting
autarkies, satisfying assignments will also be detected as soon as they appear.

5.4.2.3. Look-ahead autarky resolvents

In case a look-ahead satisfies all but one of the reduced clauses, we have almost
detected an autarky. In Example 5.4.2 the look-ahead on x2, x4, and x5 cre-
ated only one clause that was not satisfied: ¬x3 ∨ ¬x4, ¬x2 ∨ ¬x3, and x2 ∨ x4

respectively. Due to these binary clauses none of the variables is forced to a value.

However, we know that if such a particular clause were satisfied, we would
have detected an autarky. This knowledge can be added to the formula: In case
of the look-ahead on x2, if ¬x3 ∨ ¬x4 is satisfied x2 is true. So ¬x3 → x2 and
¬x4 → x2. The binary clauses of these implications x3∨x2 and x4∨x2 are referred
to as look-ahead autarky resolvents – see also Section 11.13.2 and [Kul99c, Kul99b].
These can be added to the formula to further constrain it. Generally, let C be
the only reduced clause which is not satisfied after the look-ahead on x. For all
literals li in C we can add to the formula an look-ahead autarky resolvent x∨¬li.

Look-ahead autarky resolvents and heuristics. Although look-ahead au-
tarky resolvents further constrain a formula, their addition could contribute to
a significant drop in performance of a solver. The reason for this paradox can
be found in the effect of look-ahead autarky resolvents on the heuristics: Ac-
cording to difference heuristics, variables are important if they create many new
clauses. Therefore, variables on which look-ahead results in only a single new
clause should be considered unimportant. However, the heuristic values of WBH,
BSH, and CRA increases after adding these look-ahead autarky resolvents. This
makes it more likely that unimportant variables are chosen as decision variable.
Therefore, it is useful to neglect these clauses while computing the heuristics.

5.4.3. Double look-ahead

Due to the design of MixDiff heuristics in look-ahead Sat solvers, unbalanced
variables are rarely selected as decision variables. To compensate for this, Li
developed the DoubleLook procedure [Li99]. This procedure performs look-
aheads on a second level of propagation (on the reduced formula after a look-
ahead) to increase the number of detected forced literals.

We refer to the double look-ahead on x as calling the DoubleLook procedure
on the reduced formula F [x = 1]. A double look-ahead on x is called successful
if the DoubleLook procedure detects that F [x = 1] is unsatisfiable. Otherwise
it is called unsuccessful. Similar to a failed look-ahead on x, a successful double

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 178 — #24
i

i

i

i

i

i

178 Chapter 5. Look-Ahead Based SAT Solvers

look-ahead on x detects a conflict in F [x = 1] and thereby forces x to be assigned
to false.

Although double look-aheads are expensive, they can be a relative efficient
method to detect some forced literals in practice. In order to reduce the solving
time, many double look-aheads must be successful. Prediction of the success of a
double look-ahead is therefore essential.

Double look-ahead heuristics. The heuristics regarding double look-aheads
focus on the success predictor. Li suggests to use the number of newly created
binary clauses as an effective predictor [Li99]. If the number of newly created
binary clauses during look-ahead on x (denoted by |F [x = 1]2 \ F| is larger than
a certain parameter (called ∆trigger) than the DoubleLook procedure should be
triggered. All double look-ahead heuristics are concerned with the optimal value
of ∆trigger.

The first implementation of the DoubleLook procedure used a static value
for ∆trigger. Li implemented ∆trigger := 65 in his solver satz. This magic con-
stant is based on experiments on hard random 3-Sat formulae. Although these
instances can be solved much faster using this setting, on structured instances it
frequently results in the call of too many double look-aheads, which will reduce
overall performance.

Another static implementation for ∆trigger is found in kcnfs by Dubois and
Dequen. They use ∆trigger := 0.17 · n, with n referring to the original number of
variables. This setting also arises from experiments on random 3-Sat formulae.
Especially on random and structured instances with large n, better results are
obtained compared to ∆trigger := 65.

A first dynamic heuristic was developed by Li for a later version of satz. It
initializes ∆trigger := 0.17 ·n. If a double look-ahead on x is unsuccessful, ∆trigger

is updated to ∆trigger := |F [x = 1]2 \ F|. The motivation for the update is as
follows: Assuming the number of newly created binary clauses is an effective pre-
dictor for success of a double look-ahead, and because the double look-ahead on
x was unsuccessful, ∆trigger should be at least |F [x = 1]2 \ F|. After a successful
DoubleLook call, ∆trigger is reset to ∆trigger = 0.17 · n. In practice, this dynamic
heuristic ”turns off” the DoubleLook procedure on most structured instances.
The procedure is only rarely triggered due to the first update rule. The per-
formance on these instances is improved to back to normal (i.e. not calling the
DoubleLook at all).

A second dynamic heuristic was developed by Heule and Van Maaren for their
solver march dl [HvM07]. It initializes ∆trigger := 0. Like the dynamic heuristic in
satz, it updates ∆trigger = |F [x = 1]2 \F| after an unsuccessful double look-ahead
on x. The important difference is that ∆trigger is not decreased after a successful
doublelook, but ∆trigger is slightly reduced after each look-ahead. Therefore, dou-
ble look-aheads are performed once in a while. On random instances this dynamic
heuristic yields comparable performances on random formulae. However, the use
of the DoubleLook procedure with this heuristic improves the performance on
many structured instances as well.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 179 — #25
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 179

5.4.3.1. Double look-ahead resolvents

An unsuccessful double look-ahead is generally not a total wast of time. For
example, the look-ahead on xi triggers the DoubleLook procedure. On the
second level of propagation three failed literals are detected: xr,¬xs, and xt. Thus
we learn xi → ¬xr, xi → xs, and xi → ¬xt - equivalent to the binary clauses
¬xi ∨ ¬xr, ¬xi ∨ xs, ¬xi ∨ ¬xt. Since the DoubleLook procedure performs
additional look-aheads on free variables in F [xi = 1], we know that F does not
contain these binary clauses - otherwise they would have been assigned already.

We refer to these binary clauses as double look-ahead resolvents. In case a
double look-ahead is unsuccessful, double look-ahead resolvents can be added
to F to further constrain the formula. On the other hand, a successful double
look-ahead on xi will force xi to false, thereby satisfying all these resolvents.

Adding double look-ahead resolvents can be useful to reduce overall costs
caused by the DoubleLook procedure. If a look-ahead on xi triggers this proce-
dure and appears to by unsuccessful, it is likely that it will trigger it again in the
next node of the search-tree. By storing the failed literals at the second level of
propagation as resolvents, the DoubleLook procedure does not have to perform
costly look-aheads to detect them again.

Double look-ahead resolvents and heuristics. Since the DoubleLook

procedure is triggered when a look-ahead on literal (¬)xi creates many new binary
clauses, the Diff values for those literals is relatively high. Adding double look-
ahead resolvents will further boost these Diff values. This increases the chance
that variables are selected as decision variable because the Diff of either its
positive or negative literal is very large. Concluding: By adding double look-
ahead resolvents, decision heuristics may select decision variables yielding a more
unbalanced search-tree.

5.5. Eager Data-Structures

Unit propagation is the most costly part of state-of-the-art complete Sat solvers.
Within conflict-driven solvers, the computational costs of unit propagation is
reduced by using lazy data-structures such as 2-literal watch pointers. Yet, for
look-ahead Sat solvers these data-structures are not useful: The costs of unit
propagation in these solvers is concentrated in the LookAhead procedure due
to the numerous look-aheads. To compute the difference heuristics (as presented
in Section 5.3.1), one requires the sizes of the reduced clauses. By using lazy
data-structures, these sizes cannot be computed cheaply. However, by using eager
data-structures the unit propagation costs can be reduced. The use of eager data-
structures originates form the Böhm Sat solver [BS96]. This section offers three
techniques to reduce the costs of unit propagation:

• Efficient storage of binary clauses: Binary clauses can be stored such
that they require only half the memory compared to conventional storage.
In general, structured instances consists mostly of binary clauses. This
significantly reduces the storage of the formula. Such a way of storage

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 180 — #26
i

i

i

i

i

i

180 Chapter 5. Look-Ahead Based SAT Solvers

reduces the cost of unit propagation and makes it possible to cheaply detect
constraint resolvents - see Section 5.5.1

• Removal of inactive clauses: Many of the original clauses become inac-
tive (satisfied) down in the search-tree. Look-ahead can be performed faster
if these clauses are removed from the data-structures - see Section 5.5.2

• Tree based look-ahead: Many propagations made during the look-ahead
phase are redundant. A technique called tree-based look-ahead reduces this
redundancy using implication trees - see Section 5.5.3.

5.5.1. Binary implication arrays

Generally, clauses are stored in a clause database together with a look-up table
for each literal in which clauses it occurs. Such a storage is relatively expensive
for binary clauses: Instead of storing the clauses, one could add the implications
of assigning a literal to true directly in the “look-up table” [PH02]. We refer to
such a storage as binary implication arrays. Notice that the latter data-structure
requires only half the space compared to the former one. Figure 5.7 shows a
graphical example of both data-structures for four binary clauses. Storing clauses
in separate binary and non-binary (n-ary) data-structures reduces the computa-
tional costs of unit propagation: 1) Cache performance is improved because of
the cheaper storage, and 2) No look-up is required for binary clauses when they
are stored in binary implication arrays.

clause0

clause1

clause2

clause3

x1 x2

¬x2 x3

¬x1 ¬x3

x1 x3

x1

¬x1

x2

¬x2

x3

¬x3

0 3
2
0
1
1 3
2

x1

¬x1

x2

¬x2

x3

¬x3

¬x3

x2 x3

x3

x1

¬x1

¬x2 x1

(a) (b)

Figure 5.7. (a) A structure with binary clauses stored in a clause database, and literal look-up

arrays containing the indices that point to the clauses in which they occur. (b) Binary clauses

stored in implication arrays.

Besides the cheaper storage, splitting a formula in binary clauses (F2) and
n-ary clauses (F>2) is also useful to efficiently detect constraint resolvents: Recall
that constraint resolvents consist of the complement of the look-ahead literal and
a literal that only occurs in a unit clause that originates from an n-ary clause.
By performing unit propagation in such a way that unit clauses resulting from
clauses in F2 are always preferred above those in F>2, the latter can be used to
construct constraint resolvents. Algorithm 5.4 shows this binary clause preferred
(BCP) unit propagation including the addition of constraint resolvents. Notice
that this procedure returns both an expanded formula with learned constraint
resolvents (F2 ∪ F>2) and a reduced formula by the look-ahead (F [x = 1]).

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 181 — #27
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 181

Algorithm 5.4 BCPUnitPropagation(formula F , variable x)

1: ϕ := {x← 1}
2: while empty clause /∈ ϕ ∗ F2 and a unit clause ∈ ϕ ∗ F2 do

3: while empty clause /∈ ϕ ∗ F2 and unit clause {y} ∈ ϕ ∗ F2 do

4: ϕ := ϕ ∪ {y ← 1}
5: end while

6: if empty clause /∈ ϕ ∗ F>2 and unit clause {y} ∈ ϕ ∗ F>2 then

7: F2 := F2 ∪ {¬x ∨ y}
8: end if

9: end while

10: return F2 ∪ F>2, ϕ ∗ F

5.5.2. Removal of inactive clauses

The presence of inactive clauses increases the computational costs of unit propaga-
tion during the LookAhead procedure. Two important causes can be observed:
First, the larger the number of clauses considered during a look-ahead, the poorer
the performance of the cache. Second, if both active and inactive clauses occur
in the data-structure during the look-ahead, a check is required to determine
the status of every clause. Removal of inactive clauses from the data-structure
prevents these unfavorable effects from taking place.

All satisfied clauses are clearly inactive clauses. In case clauses are stored in
separate binary and n-ary data-structures (see Section 5.5.1), then also clauses
become inactive if they are represented in both data-structures: If an n-ary clause
becomes a binary one and is added to the binary clause data-structure, it can be
removed from the n-ary data-structure.

5.5.3. Tree-based look-ahead

Suppose the LookAhead procedure is about to perform look-ahead on the free
variables x1, x2, and x3 on a formula that contains the binary clauses x1 ∨ ¬x2

and x1 ∨ ¬x3. Obviously, the look-ahead on x1 will assign all variables that are
forced by x1 = 1. Also, due to the binary clauses, the look-ahead on x2 and x3

will assign these variables (amongst others). Using the result of the look-ahead
on x1, the look-aheads on x2 and x3 can be performed more efficiently.

Generally, suppose that two look-ahead literals share a certain implication.
In this simple case, we could propagate the shared implication first, followed
by a propagation of one of the look-ahead literals, backtracking the latter, then
propagating the other look-ahead literal and finally backtracking to the initial
state. This way, the shared implication has been propagated only once.

Figure 5.8 shows this example graphically. The implications (from the binary
clauses) among x1, x2 and x3 form a small tree. Some thought reveals that
this process, when applied recursively, could work for arbitrary trees. Based
on this idea - at the start of each look-ahead phase - trees can be constructed
from the implications between the literals selected for look-ahead, in such a way
that each literal occurs in exactly one tree. By recursively visiting these trees,
the LookAhead procedure is more efficient. Of course, the more dense the
implication graph which arises from the binary clauses, the more possibilities are
available to form trees. Adding all sorts of resolvents will in many cases be an
important catalyst for the effectiveness of this method.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 182 — #28
i

i

i

i

i

i

182 Chapter 5. Look-Ahead Based SAT Solvers

F

F [x1 = 1]

F [x2 = 1] F [x3 = 1]

2

3 4

5

1 6

implication

action

1 propagate x1

2 propagate x2

3 backtrack x2

4 propagate x3

5 backtrack x3

6 backtrack x1

Figure 5.8. Graphical form of an implication tree with corresponding actions.

References

[BKB92] Michael Buro and Hans Kleine Büning. Report on a sat competi-
tion, 1992.

[BS96] Max Böhm and Ewald Speckenmeyer. A fast parallel sat-solver -
efficient workload balancing. Ann. Math. Artif. Intell., 17(3-4):381–
400, 1996.

[CKS95] J. M. Crawford, M. J. Kearns, and R. E. Schapire. The minimal
disagreement parity problem as a hard satisfiability problem, 1995.

[DD01] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for
efficient solving of hard 3-SAT formulae. In Bernhard Nebel, editor,
IJCAI, pages 248–253. Morgan Kaufmann, 2001.

[DD03] Gilles Dequen and Olivier Dubois. kcnfs: An efficient solver for
random k-SAT formulae. In Enrico Giunchiglia and Armando Tac-
chella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 486–501. Springer, 2003.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[Fre95] Jon William Freeman. Improvements to propositional satisfiabil-
ity search algorithms. PhD thesis, University of Pennsylvania,
Philadelphia, PA, USA, 1995.

[GW00] J. F. Groote and J. P. Warners. The propositional formula checker
heerhugo. Journal of Automated Reasoning, 24:101–125, 2000.

[HDvZvM04] Marijn J. H. Heule, Mark Dufour, Joris E. van Zwieten, and Hans
van Maaren. March eq: Implementing additional reasoning into an
efficient look-ahead SAT solver. In Holger H. Hoos and David G.
Mitchell, editors, SAT (Selected Papers, volume 3542 of Lecture
Notes in Computer Science, pages 345–359. Springer, 2004.

[Her06] Paul Herwig. Decomposing satisfiability problems. Master’s thesis,
TU Delft, 2006.

[HvM06a] Marijn J. H. Heule and Hans van Maaren. March dl: Adding adap-
tive heuristics and a new branching strategy. Journal on Satisfia-
bility, Boolean Modeling and Computation, 2:47–59, 2006.

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 183 — #29
i

i

i

i

i

i

Chapter 5. Look-Ahead Based SAT Solvers 183

[HvM06b] Marijn J. H. Heule and Hans van Maaren. Whose side are you
on? finding solutions in a biased search-tree. Technical report,
Proceedings of Guangzhou Symposium on Satisfiability In Logic-
Based Modeling, 2006.

[HvM07] Marijn J. H. Heule and Hans van Maaren. Effective incorpora-
tion of double look-ahead procedures. In Joao Marques-Silva and
Karem A. Sakallah, editors, Theory and Applications of Satisfiabil-
ity Testing - SAT 2007, volume 4501 of Lecture Notes in Computer
Science, pages 258–271. Springer, 2007.

[KL99] Oliver Kullmann and H. Luckhardt. Algorithms for SAT/TAUT
decision based on various measures, 1999. Preprint, 71 pages, avail-
able on http://cs.swan.ac.uk/~csoliver/Artikel/TAUT.ps.

[Kul99a] Oliver Kullmann. Investigating a general hierarchy of polynomially
decidable classes of CNF’s based on short tree-like resolution proofs.
Technical Report TR99-041, Electronic Colloquium on Computa-
tional Complexity (ECCC), October 1999.

[Kul99b] Oliver Kullmann. New methods for 3-SAT decision and worst-case
analysis. Theoretical Computer Science, 223(1-2):1–72, July 1999.

[Kul99c] Oliver Kullmann. On a generalization of extended resolution. Dis-
crete Applied Mathematics, 96-97(1-3):149–176, 1999.

[Kul02] Oliver Kullmann. Investigating the behaviour of a SAT solver
on random formulas. Technical Report CSR 23-2002, Uni-
versity of Wales Swansea, Computer Science Report Series
(http://www-compsci.swan.ac.uk/reports/2002.html), Octo-
ber 2002. 119 pages.

[Kul04] Oliver Kullmann. Upper and lower bounds on the complexity of
generalised resolution and generalised constraint satisfaction prob-
lems. Annals of Mathematics and Artificial Intelligence, 40(3-
4):303–352, March 2004.

[LA97a] Chu Min Li and Anbulagan. Heuristics based on unit propagation
for satisfiability problems. In IJCAI (1), pages 366–371, 1997.

[LA97b] Chu Min Li and Anbulagan. Look-ahead versus look-back for sat-
isfiability problems. In Gert Smolka, editor, CP, volume 1330 of
Lecture Notes in Computer Science, pages 341–355. Springer, 1997.

[Li99] Chu Min Li. A constraint-based approach to narrow search trees
for satisfiability. Information processing letters, 71(2):75–80, 1999.

[Li00] Chu Min Li. Integrating equivalency reasoning into davis-putnam
procedure. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Ap-
plications of Artificial Intelligence, pages 291–296. AAAI Press /
The MIT Press, 2000.

[MZK+99] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Sel-
man, and Lidror Troyansky. Determining computational complex-
ity from characteristic ’phase transitions’. Nature, 400:133–137,
1999.

[PH02] S. Pilarski and G. Hu. Speeding up sat for eda. In DATE ’02:
Proceedings of the conference on Design, automation and test in

http://cs.swan.ac.uk/~csoliver/Artikel/TAUT.ps
http://www-compsci.swan.ac.uk/reports/2002.html

i

i

“p01c05˙lah” — 2008/11/20 — 16:31 — page 184 — #30
i

i

i

i

i

i

184 Chapter 5. Look-Ahead Based SAT Solvers

Europe, page 1081, Washington, DC, USA, 2002. IEEE Computer
Society.

[SS98] Mary Sheeran and Gunnar St̊almarck. A tutorial on st̊almarcks’s
proof procedure for propositional logic. In FMCAD ’98: Proceed-
ings of the Second International Conference on Formal Methods in
Computer-Aided Design, pages 82–99, London, UK, 1998. Springer-
Verlag.

	Look-Ahead Based SAT Solvers
	XXXMarijn J.H. Heule and Hans van Maaren
	Introduction
	Domain of application

	General and Historical Overview
	The Look-Ahead Architecture
	History of Look-Ahead Sat Solvers

	Heuristics
	Difference heuristics
	Direction heuristics
	Pre-selection heuristics

	Additional Reasoning
	Local learning
	Autarky Reasoning
	Double look-ahead

	Eager Data-Structures
	Binary implication arrays
	Removal of inactive clauses
	Tree-based look-ahead

	References

