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Abstract. Decision procedures for Boolean satisfiability (SAT), especially mod-

ern conflict-driven clause learning (CDCL) solvers, act routinely as core solving

engines in various real-world applications. Preprocessing, i.e., applying formula

rewriting/simplification rules to the input formula before the actual search for

satisfiability, has become an essential part of the SAT solving tool chain. Further,

some of the strongest SAT solvers today add more reasoning to search by inter-

leaving formula simplification and CDCL search. Such inprocessing SAT solvers

witness the fact that implementing additional deduction rules in CDCL solvers

leverages the efficiency of state-of-the-art SAT solving further. In this paper we

establish formal underpinnings of inprocessing SAT solving via an abstract inpro-

cessing framework that covers a wide range of modern SAT solving techniques.

1 Introduction

Decision procedures for Boolean satisfiability (SAT), especially modern conflict-driven

clause learning (CDCL) [1,2] SAT solvers, act routinely as core solving engines in many

industrial and other real-world applications today. Formula simplification techniques

such as [3,4,5,6,7,8,9,10,11,12,13,14] applied before the actual satisfiability search,

i.e., in preprocessing, have proven integral in enabling efficient conjunctive normal

form (CNF) level Boolean satisfiability solving for real-world application domains, and

have become an essential part of the SAT solving tool chain. Taking things further,

some of the strongest SAT solvers today add more reasoning to search by interleaving

formula simplification and CDCL search. Such inprocessing SAT solvers, including the

successful state-of-the-art CDCL SAT solvers PRECOSAT [15], CRYPTOMINISAT [16],

and LINGELING [17], witness the fact that implementing additional deduction rules

within CDCL solvers leverages the efficiency of state-of-the-art SAT solving further.

To illustrate the usefulness of preprocessing and inprocessing in improving the per-

formance of current state-of-the-art SAT solvers, we modified the 2011 SAT Compe-

tition version of the state-of-the-art SAT solver LINGELING that is based on the in-

processing CDCL solver paradigm. The resulting patch4 allows to either disable all

preprocessing or to just disable inprocessing during search. We have run the original

version and these two versions on the benchmarks from the application track—the most

important competition category from the industrial perspective—of the last two SAT

competitions organized in 2009 and 2011. The results are shown in Table 1.
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Table 1. Results of running the original 2011 competition version 587f of LINGELING on the

application instances from 2009 and from 2011, then without inprocessing and in the last row

without any pre- nor inprocessing. The experiments were obtained on a cluster with Intel Core 2

Duo Quad Q9550 2.8-GHz processors, 8-GB main memory, running Ubuntu Linux. Memory

consumption was limited to 7 GB and run-time to 900 seconds. The single-threaded sequential

version of LINGELING was used with one solver instance per processor.

2009 2011

LINGELING solved SAT UNSAT time solved SAT UNSAT time

original version 587f 196 79 117 114256 164 78 86 144932

only preprocessing 184 72 112 119161 159 77 82 145218

no pre- nor inprocessing 170 68 102 138940 156 78 78 153434

The CNF preprocessor SATELITE introduced in [7] applied variable elimination,

one of the most effective simplification techniques in state-of-the-art SAT solvers. As

already shown in [7] preprocessing can also be extremely useful within incremental

SAT solving. This form of preprocessing, which is performed at each incremental call

to the SAT solver, can be considered as an early form of inprocessing. Fig. 1 confirms

this observation in the context of incremental SAT solving for bounded model checking.

However, developing and implementing sound inprocessing solvers in the presence

of a wide range of different simplification techniques (including variable elimination,

blocked clause elimination, distillation, equivalence reasoning) is highly non-trivial. It

requires in-depth understanding on how different techniques can be combined together

and interleaved with the CDCL algorithm in a satisfiability-preserving way. Moreover,

the fact that many simplification techniques only preserve satisfiability but not logical

equivalence poses additional challenges, since in many practical applications of SAT
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Fig. 1. Running the bounded model checker BLIMC, which is part of the LINGELING distribu-

tion with and without inprocessing on the single property benchmarks of the Hardware Model

Checking Competition 2011 up to bound 1000. With inprocessing 153975 bounds were reached,

while without inprocessing only 125436. The figure shows the maximum bound reached (suc-

cessfully checked) on the y-axis for each of the 465 benchmark (x-axis). Benchmarks are sorted

by the maximum bound. For completeness we also include a run in non-incremental mode, which

reaches only 49915 bounds. In this mode a new CNF is generated and checked for each bound

with a fresh SAT solver instance separately, but with both pre- and inprocessing enabled.



solvers a solution is required for satisfiable formulas, not only the knowledge of the

satisfiability of the input formula. Hence, when designing inprocessing SAT solvers for

practical purposes, one also has to address the intricate task of solution reconstruction.

In this paper we propose an abstract framework that captures generally the deduc-

tion mechanisms applied within inprocessing SAT solvers. The framework consists of

four generic and clean deduction rules. Importantly, the rules specify general conditions

for sound inprocessing SAT solving, against which specific inprocessing techniques can

be checked for correctness. The rules also capture solution reconstruction for a wide

range of simplification techniques that do not preserve logical equivalence: while solu-

tion reconstruction algorithms have been proposed previously for specific inprocessing

techniques [18,11], we show how a simple linear-time algorithm covers solution recon-

struction for a wide range of techniques.

Our abstract framework has similarities to the abstract DPLL(T ) framework [19]

and its extensions [20,21], and the proof strategies approach of [22], in describing de-

duction via transition systems. However, in addition to inprocessing as built-in feature,

our framework captures SAT solving on a more generic level than [19], not being re-

stricted to DPLL-style search procedures, and at the same time it gives a fine-grained

view of inprocessing SAT solving. We show how the rules of our framework can be in-

stantiated to obtain both known and novel inprocessing techniques. We give examples

of how the correctness of such specific techniques can be checked based on the generic

rules in our framework. Furthermore, we show that our rules in the general setting are

extremely powerful, even capturing Extended Resolution [23].

Arguing about correctness of combinations of different solving techniques in con-

crete SAT solver development is tremendously simplified by our framework. One ex-

ample is the interaction of learned clauses with variable elimination [7]. After variable

elimination is performed on the irredundant (original) clauses during inprocessing, the

question is what to do with learned clauses that still contain eliminated variables. While

current implementations simply forget (remove) such learned clauses, it follows easily

from our framework that it is sound to keep such learned clauses and use them subse-

quently for propagation. It is also easy to observe e.g. that one can (selectively) turn

eliminated or blocked clauses into learned clauses to preserve propagation power.

Another more intricate example from concrete SAT solver development occurs in

the context of blocked clauses [12]. An intermediate version of LINGELING contained a

simple algorithm for adding new redundant (learned) binary clauses, which are blocked,

but only w.r.t. irredundant (original) clauses, thus disregarding already learned clauses.

This would be convenient since focusing on irredundant clauses avoids having full oc-

currence lists for learned clauses. Further, marking the added clauses as redundant im-

plies that they would not have to be considered in consecutive variable eliminations, and

thus might enable to eliminate more variables without increasing the number of clauses.

However, we found examples that proved this approach to be incorrect. An attempt to

fix this problem was to include those added clauses in further blocked clause removal

and addition attempts, and only ignore them during variable elimination. This version

was kept in the code for some months without triggering any inconsistencies. However,

this is incorrect, and can be easily identified via our formal framework.



After preliminaries (Sect. 2), we review redundancy properties (Sect. 3) and their

extensions (Sect. 4) based on different clause elimination and addition procedures. The

abstract inprocessing rules are discussed in Sect. 5, followed by an instantiation of the

rules using a specific redundancy property and a related generic solution reconstruction

approach (Sect. 6). Based on this instantiation of the rules, we show how the rules

capture a wide range of modern SAT solving techniques and, via examples, how the

rules catch incorrect variations of these techniques (Sect. 7).

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal x and the negative

literal ¬x. A clause is a disjunction of literals and a CNF formula a conjunction of

clauses. A clause can be seen as a finite set of literals and a CNF formula as a finite

set of clauses. A truth assignment is a function τ that maps literals to {0, 1} under the

assumption τ(x) = v if and only if τ(¬x) = 1 − v. A clause C is satisfied by τ if

τ(l) = 1 for some literal l ∈ C. An assignment τ satisfies F if it satisfies every clause

in F ; such a τ is a model of F .

Two formulas are logically equivalent if they are satisfied by exactly the same set of

assignments, and satisfiability-equivalent if both formulas are satisfiable or both unsat-

isfiable. The length of a clause C is the number of literals in C. A unit clause has length

one, and a binary clause length two. The set of binary clauses in a CNF formula F is

denoted by F2. The resolution rule states that, given two clauses C1 = {l, a1, . . . , an}
and C2 = {¬l, b2, . . . , bm}, the clause C1 ⊗C2 = {a1, . . . , an, b1, . . . , bm}, called the

resolvent C1 ⊗l C2 (or simply C1 ⊗ C2 when clear from context) of C1 and C2, can

be inferred by resolving on the literal l. For a CNF formula F , let Fl denote the set of

clauses in F that contain the literal l. The resolution operator ⊗l can be lifted to sets of

clauses by defining Fl ⊗l F¬l = {C ⊗l C
′ | C ∈ Fl, C

′ ∈ F¬l}.

3 Clause Elimination and Addition

Clause elimination procedures [11] are an important family of CNF simplification

techniques which are to an extent orthogonal with resolution-based techniques [12].

Intuitively, clause elimination refers to removing from CNF formulas clauses that are

redundant (with respect to some specific redundancy property) in the sense that satisfi-

ability is preserved under removal.

Definition 1. Given a CNF formula F , a specific clause elimination procedure PE
removes clauses that have a specific property P from F until fixpoint. In other words,

PE on input F modifies F by repeating the following until fixpoint: if there is a clause

C ∈ F that has P , let F := F \ {C}.

Clause Addition Procedures, the dual of clause elimination procedures, add to (instead

of removing from) CNF formulas clauses that are redundant (with respect to some

specific redundancy property) in the sense that satisfiability is preserved under adding.



Definition 2. Given a CNF formula F , a specific clause addition procedure PA adds

clauses that have a specific property P to F until fixpoint. In other words, PA on input

F modifies F by repeating the following until fixpoint: if there is a clause C that has

P , let F := F ∪ {C}.

While clause elimination procedures have been studied and exploited to a much

broader extent than clause addition, the latter has already proven important both from

the theoretical and the practical perspectives, as we will discuss further in Sect. 7.

For establishing concrete instantiations of clause elimination and addition proce-

dures, redundancy properties on which such procedures are based on need to be defined.

We will now review various such properties, following [11].

3.1 Notions of Redundancy

A clause is a tautology if it contains both x and ¬x for some variable x. Given a CNF

formula F , a clause C1 ∈ F subsumes (another) clause C2 ∈ F in F if and only if

C1 ⊂ C2, and then C2 is subsumed by C1.

Given a CNF formula and a clause C ∈ F , (hidden literal addition) HLA(F,C)
is the unique clause resulting from repeating the following clause extension steps until

fixpoint: if there is a literal l0 ∈ C such that there is a clause (l0 ∨ l) ∈ F2 \ {C} for

some literal l, let C := C ∪ {¬l}.

For a clause C, (asymmetric literal addition) ALA(F,C) is the unique clause re-

sulting from repeating the following until fixpoint: if l1, . . . , lk ∈ C and there is a clause

(l1 ∨ · · · ∨ lk ∨ l) ∈ F \ {C} for some literal l, let C := C ∪ {¬l}.

Given a CNF formula F and a clause C, a literal l ∈ C blocks C w.r.t. F if (i) for

each clause C′ ∈ F with ¬l ∈ C′, the resolvent C ⊗l C
′ is a tautology, or (ii) ¬l ∈ C,

i.e., C is itself a tautology. A clause C is blocked w.r.t. F if there is a literal l that blocks

C w.r.t. F . For such an l, we say that C is blocked on l ∈ C w.r.t. F .

What follows is a list of properties based on which various clause elimination pro-

cedures [11,12] can be defined.

S (subsumption) C is subsumed in F .

HS (hidden subsumption) HLA(F,C) is subsumed in F .

AS (asymmetric subsumption) ALA(F,C) is subsumed in F .

T (tautology) C is a tautology.

HT (hidden tautology) HLA(F,C) is a tautology.

AT (asymmetric tautology) ALA(F,C) is a tautology.

BC (blocked) C is blocked w.r.t. F .

HBC (hidden blocked) HLA(F,C) is blocked w.r.t. F .

ABC (asymmetric blocked) ALA(F,C) is blocked w.r.t. F .

As concrete examples, BC gives the clause elimination procedure blocked clause

elimination (BCE) [12], and HT hidden tautology elimination (HTE) [11].

A relevant question is how the above-listed properties are related to each other.

Especially, if any C having property P also has property P ′, then we know that a



clause elimination procedure based on P ′ can remove at least the same clauses as a

clause elimination procedure based on P (similarly for clause addition procedures).

The relationships between these properties (first analyzed as the relative effectiveness

in the special case of clause elimination procedures in [11]) are illustrated in Fig. 2.

The properties prefixed with R are new and will be defined next.
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Fig. 2. Relationships between clause redundancy properties. An edge from P to P ′ means that

any clause that has property P ′ also has property P . A missing edge from P to P ′ means that

there are clauses with property P ′ that do not have property P . Clause elimination and addition

procedures based on the properties inside the preserve logical equivalence box preserve logical

equivalence under elimination and addition [11].

4 Extended Notions of Redundancy

Clause elimination procedures can be extended by using the resolution rule as a specific

kind of “look-ahead step” within the procedures. This turns a specific clause elimination

procedure PE based on property P into the clause elimination procedure RPE based

on a property RP . Analogously, a specific clause addition procedure PA based on

property P turns into the clause addition procedure RPA based on a property RP .

Definition 3. Given a CNF formula F and a clause C ∈ F , C has property RP iff

either (i) C has the property P , or (ii) there is a literal l ∈ C such that for each clause

C′ ∈ F with ¬l ∈ C′, each resolvent in C ⊗l C
′ has P (in this case C has RP on l).

Example 1. Consider the formula F = (a ∨ b ∨ x) ∧ (¬x ∨ c ∨ d) ∧ (a ∨ b ∨ c). The

only resolvent of (a ∨ b ∨ x) on x is (a ∨ b ∨ c ∨ d) which is subsumed by (a ∨ b ∨ c).
Therefore (a ∨ b ∨ x) has property RS (resolution subsumption).

The intuition is that the “resolution look-ahead” step can reveal additional redun-

dant clauses, resulting in the hierarchy shown in Fig. 2. Notice that the property RT
(resolution tautology) is the same as the property BC (blocked).

Proposition 1. For any CNF formula F and clause C that has RAT on l ∈ C w.r.t. F ,

F is satisfiability-equivalent to F ∪ {C}.

Proof. By definition, since C has RAT on l ∈ C w.r.t. F , all resolvents C ⊗l F¬l are

asymmetric tautologies w.r.t. F (and w.r.t. the larger F ∪ (C ⊗l F¬l) as well). Hence



F is logically equivalent to F ∪ (C ⊗l F¬l). Now consider a truth assignment τ that

satisfies F , but falsifies C. Since C is falsified by τ , and all C′ ∈ C ⊗l F¬l are satisfied

by τ due to logical equivalence of F and F ∪ (C ⊗l F¬l), τ satisfies at least two literals

in each clause in F¬l (at least one more beside ¬l). Hence the truth assignment τ ′ that

is a copy of τ except for τ ′(l) = 1 satisfies F and C. �

Proposition 2. The set of clauses that have RAS is a proper subset of the set of clauses

that have RAT.

Proof. Assume a clause C has RAS on l ∈ C w.r.t. F . If C has AS, then C has AT [11]

and hence also RAT. Otherwise, take any resolvent C′ ∈ C ⊗l F¬l. By definition, C′

has AS. Since clauses with AS are a proper subset of the clauses with AT, C has RAT
on l w.r.t. F . Moreover, let F := (a ∨ ¬b) ∧ (¬a ∨ b). Now (a ∨ ¬b) has RAT on a
w.r.t. F . However, (a ∨ ¬b) does not have RAS w.r.t. F . �

Proposition 3. The set of clauses that have ABC is a proper subset of the set of clauses

that have RAT.

Proof. Let C be clause that has ABC on l ∈ C w.r.t. F . W.l.o.g. assume C to be non-

tautological. By [11, Lemma 19], l ∈ C. Take the resolvent C′ = C ⊗l C
′′ for any

C′′ ∈ F¬l. First, we show that ALA(F,C) ⊆ ALA(F,C′). C′ overlaps with C′′ in all

literals except ¬l. W.l.o.g. assume C′ 6∈ F (otherwise C′ is subsumed by F and thus

also has AT w.r.t. F ). Therefore, by the definition of ALA, l ∈ ALA(F,C′). Hence

C ⊆ ALA(F,C′). Due to monotonicity of ALA under the assumption C′ 6∈ F , we

have ALA(F,C) ⊆ ALA(F,C′). By definition of ABC, the clause ALA(F,C)⊗l C
′′

is a tautology, and hence there is an l′ ∈ ALA(F,C) \ {l} with ¬l′ ∈ C′′. Now,

l′ ∈ ALA(F,C′) since ALA(F,C) ⊆ ALA(F,C′), and ¬l′ ∈ ALA(F,C′) since

C′ = C ⊗l C
′′. Thus C′ has AT on l w.r.t. F , which implies that C has RAT w.r.t. F .

For proper containment, consider the formula F = (a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ x) ∧
(¬x ∨ c ∨ d) ∧ (¬a ∨ y ∨ z) ∧ (¬b ∨ y ∨ ¬z) ∧ (¬c ∨ ¬y ∨ z) ∧ (¬d ∨ ¬y ∨ ¬z). No

clause in F has ABC. Yet (a ∨ b ∨ x) has RAT on x w.r.t. F . �

Proposition 4. The set of clauses which have RHT is a proper subset of the set of

clauses that have RAT.

Proof. Assume C has RHT on l ∈ C w.r.t. F . If C has HT, then C has AT [11] and

hence also RAT. Otherwise, take any C′ ∈ C ⊗l F¬l. By definition, C′ has HT. Since

clauses with HT are a proper subset of the clauses with AT, C has RAT on l w.r.t. F .

Moreover, let F := (a ∨ b ∨ x) ∧ (¬x ∨ c) ∧ (a ∨ b ∨ c) ∧ (¬a) ∧ (¬b) ∧ (¬c). Now

(a ∨ b ∨ x) has RAT on x w.r.t. F , but (a ∨ b ∨ x) does not have RHT. �

5 Inprocessing as Deduction

We will now introduce generic rules for inprocessing CNF formulas. The rules describe

inprocessing as a transition system. States in the transition system are described by

tuples of the form ϕ [ ρ ]σ, where ϕ and ρ are CNF formulas, and σ is a sequence of

literal-clause pairs. For inprocessing a given CNF formulaF , the initial state is F [ ∅ ] 〈〉,
where ∅ denotes the empty CNF formula, and 〈〉 the empty sequence.

Generally, a state ϕ [ ρ ]σ has the following interpretation.



– ϕ is a CNF formula that consists of the set of irredundant clauses. Irredundant

means here that all clauses in ϕ are considered to be “hard” in the sense that, in

order to satisfy the input CNF formula F , all clauses in ϕ are to be satisfied.

– ρ is a CNF formula that consists of redundant clauses. In contrast to the irredundant

clauses ϕ, these clauses can be removed from consideration.

– σ denotes a sequence of literal-clause pairs l:C with l ∈ C that are required for

solution reconstruction, as explained in detail in Sect. 6.1.

For some intuition on why we separate ϕ and ρ, note that learned clauses, i.e.,

clauses added through conflict analysis in CDCL solvers, are maintained separately

from the clauses in the input formula, and can be forgotten (i.e., removed) since in pure

CDCL they are entailed by the input formula. However, in the more generic context of

inprocessing SAT solving captured by our framework, clauses in ρ may not be entailed

by the original formula F . This is discussed in detail in Sect. 7 using clause addition

as an example. In addition, for elimination techniques (such as BCE, variable elimi-

nation, and their variants) only the clauses in ϕ need to be considered when checking

redundancy. Nevertheless, the clauses in ρ can be used for e.g. unit propagation.

5.1 Rules of Inprocessing

Our abstract framework for inprocessing SAT solving is based on four rules: LEARN,

FORGET, STRENGTHEN, and WEAKEN, presented in Fig. 3. These rules characterize

the set of legal next states ϕ′ [ ρ′ ]σ′ of a given current state ϕ [ ρ ]σ in the form

ϕ [ ρ ]σ

ϕ′ [ ρ′ ]σ′
.

Given a CNF formula F , a state ϕk [ ρk ]σk is reachable from the state F [ ∅ ] 〈〉 iff there

is a sequence 〈ϕ0 [ ρ0 ]σ0, . . . , ϕk [ ρk ]σk〉 such that (i) ϕ0 = F , ρ0 = ∅, and σ0 = 〈〉,
and (ii) for each i = 1, . . . , k, one of the rules in Fig. 3 allows the transition from

ϕi−1 [ ρi−1 ]σi−1 to ϕi [ ρi ]σi. This sequence is called a derivation of ϕk ∧ρk from F .

The inprocessing rules are correct in the sense that they preserve satisfiability, i.e.,

starting from the state F [ ∅ ] 〈〉, the following invariant holds for all i = 1, . . . , k:

Formulas ϕi and (ϕi ∧ ρi) are both satisfiability-equivalent to F .

The intuition behind these rules is as follows.

LEARN Allows for introducing (learning) a new clause C to the current redundant

formula ρ. In the generic setting, the precondition ♯ is that ϕ∧ ρ and ϕ∧ ρ∧C are

satisfiability-equivalent.

FORGET Allows for forgetting a clause C from the current set of redundant clauses ρ.

STRENGTHEN Allows for strengthening ϕ by moving a clause C in the redundant for-

mula ρ ∧ C to ϕ.

WEAKEN Allows for weakening ϕ by moving a clause C in the current irredundant

formula ϕ∧C to ρ. In the generic setting, the precondition ♭ is that ϕ and ϕ∧C are

satisfiability-equivalent. (The literal l is related to instantiations of the rule based

on specific redundancy properties, as further explained in Sect. 6 and Sect. 7.)
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Fig. 3. Inprocessing rules

Notice that for unsatisfiable CNF formulas the generic precondition ♯ allows for

learning the empty clause to ϕ in a single step. Similarly, for satisfiable CNF formulas

the generic precondition ♭ allows for weakening ϕ by moving all clauses in ϕ to ρ.

However, in practice mostly polynomial-time checkable redundancy properties are of

interest. Such properties are further discussed in Sect. 6 and Sect. 7.

Proposition 5. The inprocessing rules in Fig. 3 are sound and complete in that:

(i) If F is unsatisfiable, then there is a derivation of an unsatisfiable ϕk ∧ ρk, where

k ≥ 0, from F using the rules (completeness).

(ii) If there is a derivation of an unsatisfiable ϕk ∧ ρk, where k ≥ 0, from F using the

rules, then F is unsatisfiable (soundness).

Proof. (i) Since F is unsatisfiable, the LEARN rule can be used for learning the triv-

ially unsatisfiable empty clause. (ii) We observe the following for any i = 1, . . . , k. If

LEARN is applied to enter state ϕi [ ρi ]σi fromϕi−1 [ ρi−1 ]σi−1, by the precondition ♯,
ϕi−1 and ϕi ∧ ρi are satisfiability-equivalent. If STRENGTHEN or WEAKEN is applied,

we have ϕi−1 ∧ρi−1 = ϕi∧ρi. If FORGET is applied, we have ϕi−1 ∧ρi−1 |= ϕi∧ρi.
The claim then follows by induction on i = k, . . . , 1. �

One could question whether the precondition ♯ of LEARN, i.e., ϕ∧ ρ and ϕ∧ ρ∧C
are satisfiability-equivalent, could be weakened to “ϕ and ϕ ∧ C are satisfiability-

equivalent”. In other words, must the redundant clauses in ρ be taken into account for

LEARN? To observe that ρ must indeed be included in ♯, consider the CNF formula con-

sisting of the single clause (a). From the initial state a [∅] 〈〉 we obtain ∅ [a] 〈〉 through

WEAKEN. In case ρ were ignored in ♯, it would then be possible to apply LEARN and

derive ∅ [a∧¬a] 〈〉. However, this would violate the invariant of preserving satisfiability,

since a ∧ ¬a is unsatisfiable.

6 Instantiating the Rules based on RAT

In contrast to the very generic preconditions ♯ and ♭ under which the inprocessing

rules were defined in the previous section, in practical SAT solving redundant clauses

are learned and forgotten based on polynomial-time computable redundancy proper-

ties. In this section we give an instantiation of the inprocessing rules based on the

polynomial-time computable property RAT. RAT is of special interest to us since,

as will be shown in Sect. 7, known SAT solving techniques, including preprocessing,

inprocessing, clause learning, and resolution, can be captured even when restricting the

inprocessing rules using RAT. Moreover, under this property, a model of the original

formula can be reconstructed in linear-time based on any model of any derivable ϕk

using σk. This is important from the practical perspective due to the fact that in many

applications a satisfying assignment for the original input formula F is required.



Preconditions based on RAT. The preconditions of the inprocessing rules based on

the property RAT are the following for a given state ϕi [ ρi ]σi.

LEARN: ♯ is “C has RAT w.r.t. ϕi ∧ ρi”.

Notice that LEARN under this precondition does not preserve logical equivalence. For

example, consider the formula F = (a ∨ b). The LEARN rule can change (a ∨ b) [∅] 〈〉
into (a ∨ b) [C] 〈〉, with C = (¬a ∨ ¬b), since C has RAT on ¬a w.r.t. F . The truth

assignment τ = {a = 1, b = 1} satisfies F but does not satisfy F ∧C.

WEAKEN: ♭ is “C has RAT on l w.r.t. ϕi”.

Through weakening ϕi by moving a clause C ∈ ϕi to ρi+1, the new ϕi+1 may have

more models than ϕi, since RAT does not preserve logical equivalence.

6.1 Solution Reconstruction

When the WEAKEN rule is used for a transition from a state ϕi [ ρi ]σi to a state

ϕi+1 [ ρi+1 ]σi+1, the set of models of ϕi+1 can be a proper superset of the set of mod-

els of ϕi. For the practically relevant aspect of mapping any model of ϕi+1 back to a

model of ϕi, a literal pair l:C, where C is the clause moved from ϕi to ρi+1, is concate-

nated to the solution reconstruction stack σi+1. This is important when the redundancy

property used does not guarantee preserving logical equivalence. More concretely, this

is required if C has RAT but not e.g. AT.

For certain polynomial-time checkable redundancy properties, σ can be used for

mapping models back to models of the original formula in linear time, as explained

next. We describe a generic model reconstruction algorithm that can be applied in con-

junction with the inprocessing rules in case the preconditions ♯ and ♭ of LEARN and

WEAKEN are restricted to RAT. In particular, for any CNF formula F and state ϕ [ ρ ]σ
that is reachable from F [ ∅ ] 〈〉 using the inprocessing rules, given a model τ of ϕ, the

reconstruction algorithm (Fig. 4) outputs a model of F solely based on σ and τ .

Reconstruction (literal-clause pair sequence σ, model τ of ϕ)
1 while σ is not empty do

2 remove the last literal-clause pair l:C from σ
3 if C is not satisfied by τ then τ := (τ \ {l = 0}) ∪ {l = 1}
4 return τ

Fig. 4. Pseudo-code of the model reconstruction algorithm.

While the reconstruction algorithm may leave some variables unassigned in the

output assignment (model of F ), such variables can be arbitrarily assigned afterwards

for establishing a full model of F .

Example 2. Consider the state ϕi [ ρi ]σi with ϕi = (a ∨ b) ∧ (¬a ∨ ¬b), ρi = ∅
and σi = 〈〉. Apply WEAKEN to reach ϕi+1 [ ρi+1 ]σi+1, where ϕi+1 = (a ∨ b),
ρi+1 = (¬a ∨ ¬b), and σi+1 = 〈¬a:(¬a ∨ ¬b)〉. The assignment τ = {a = 1, b = 1}
satisfies ϕi+1 but not ϕi. The model reconstruction procedure will transform τ into

{a = 0, b = 1} which satisfies ϕi.



Proposition 6. Given any CNF formula F , if a state ϕ [ ρ ]σ is derivable from F using

the inprocessing rules under preconditions based on RAT, then, given any model τ of

ϕ, Reconstruction(σi, τ) returns a model of F .

Proof. Follows from the proof of Proposition 1. Assume that l:C is the last element in

σi, τ is the current truth assignment, and that WEAKEN was applied to move C from

ϕi−1 to ρi based on the fact that C has RAT on l w.r.t. ϕi−1. By the proof of Proposi-

tion 1, there are at least two literals that are satisfied by τ in every clause containing ¬l
in ϕi−1 \ {C}. Hence, in case τ(l) = 0, we can flip this assignment to τ(l) = 1. �

Interestingly, due to the generality of the inprocessing rules—as explained in the

next section—this reconstruction algorithm covers model reconstruction for various

simplification techniques that do not preserve logical equivalence, including specific

reconstruction algorithms proposed for different cause elimination techniques [18,11]

and variable elimination [18], and combinations thereof with other important techniques

such as equivalence reasoning [24,3].

7 Capturing SAT Solving Techniques with the Inprocessing Rules

In this section we show how various existing inference techniques—including both

known techniques and novel ideas—can be expressed as simple combinations of the

LEARN, FORGET, STRENGTHEN, and WEAKEN rules. One should notice, however,

that the inprocessing rules can be shown to naturally capture further inprocessing tech-

niques. However, due to the page limit we are unable to discuss further techniques

within this version of the paper. We also give examples of how incorrect variants of

these techniques can be detected.

Clause elimination procedures based on redundancy property P can be expressed as

deriving ϕ [ ρ ]σ from ϕ ∧ C [ ρ ]σ in a single step with the precondition that C has

the property P w.r.t. ϕ. One step of clause elimination is simulated by two application

steps of the inprocessing rules: 1. apply WEAKEN to move a redundant clause from

ϕ to ρ; 2. apply FORGET to remove C from ρ. As explained in Sect. 6, the generic

inprocessing rules can be instantiated using RAT as the redundancy property of the

preconditions ♯ and ♭. Since RAT covers all of the other clause redundancy properties

discussed in Sect. 3 and 4 (such as blocked clauses, hidden tautologies, etc; also recall

Fig. 2), it follows that all of the clause elimination procedures based on these properties

are captured by our inprocessing rules, even when restricting the precondition to RAT.

As an example of incorrect clause elimination, consider the idea of eliminating C
if it has the property P w.r.t. ϕ ∧ ρ (and not w.r.t. just ϕ), allowing weakening ϕ based

on ρ, i.e., also in case a clause in ρ subsumes C. This would allow using e.g. redundant

learned clauses in ρ, which can be forgotten later on, for weakening ϕ. To see that this

variant is incorrect consider ϕi [ ρi ]σi where ϕi = (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧
(a∨b∨c)∧ (a∨b∨¬c) and ρi = ∅. Note that ϕi is unsatisfiable. The clause (a∨b) has

AT w.r.t. ϕi, since ALA(ϕi, (a ∨ b)) contains all literals, and hence applying LEARN

gives ϕi+1 = ϕi and ρi+1 = (a∨b). Now, (a∨b) ∈ ρi+1 subsumes (a∨b∨c) ∈ ϕi+1,

and incorrectly applying WEAKEN would give ϕi+2 = ϕi+1 \ (a ∨ b ∨ c) and ρi+2 =
ρi+1∧(a∨b∨c). However,ϕi+2 is satisfiable, and the satisfiability-equivalence invariant



is broken since ϕi+2 ∧ ρi+2 is unsatisfiable. As a consequence, it is not correct to use

the clauses in ρ to eliminate an irrredundant clause (such as hidden or asymmetric

tautologies, blocked clauses, etc.), unless the clauses, based on which the eliminated

clause is redundant, are added to ϕ or are already part of ϕ.

Pure Literal Elimination is an additional well-known clause elimination procedure:

derive ϕ [ ρ ]σ from ϕ∧C [ ρ ]σ given that C contains a pure literal l (such that ¬l does

not appear in ϕ). It is easy to observe that this rule is also covered by our inprocessing

rule: Any clause in ϕ that contains a pure literal l has RT (and thus RAT) on l w.r.t. ϕ.

Notice that due to the WEAKEN precondition, only the irredundant clauses ϕ need to

be considered, i.e., redundant (e.g., learned) clauses can still contain ¬l.

Clause addition procedures based on redundancy property P can be expressed as

deriving ϕ [ ρ ∧C ]σ from ϕ [ ρ ]σ in a single step with the precondition that C has the

property P w.r.t. ϕ ∧ ρ. One step of clause addition is simulated by applying LEARN

to add C to ρ. Similarly to clause elimination, the generic inprocessing rules can be

instantiated using RAT as the redundancy property of the precondition ♯. Again, since

RAT covers all of the other clause redundancy properties discussed in Sect. 3 and 4, it

follows that all of the clause addition procedures based on these properties are captured

by the generic inprocessing rules.

Notice that some clause addition procedures do not preserve logical equivalence

(recall Fig. 2), and hence can restrict the set of models of ϕ ∧ ρ. For such procedures,

the inprocessing rules can be applied for checking correctness. As an example, consider

blocked clause addition (BCA): for adding a clause C to ρ, it is required that C is

blocked w.r.t. ϕ ∧ ρ. If C is only blocked w.r.t. ϕ, then BCA is not sound. Consider the

formula ϕ0 = (a∨¬b)∧(¬a∨b)∧(a∨c)∧(¬c∨b)∧(¬a∨¬c). Notice that (¬a∨¬c)
has RT (is blocked) on ¬c w.r.t. ϕ0. Hence (¬a∨¬c) can be moved from ϕ0 to be part

of ρ1 by applying the WEAKEN rule: ϕ1 = ϕ0 \ {(¬a∨¬c)}, ρ1 = ρ0 ∪ {(¬a∨¬c)},

and σ1 = σ0 ∪ {¬c:(¬a∨¬c)}. Now the clause (c∨¬b) is a RT on c w.r.t. ϕ1, but not

w.r.t. ϕ1 ∧ ρ1. Adding (c ∨ ¬b) to ρ to get ρ2 = ρ1 ∪ {(c ∨ ¬b)} and ϕ2 = ϕ1 makes

ϕ2 ∧ ρ2 unsatisfiable.

This brings us to an interesting observation of the framework. Continuing the above,

if (¬a ∨ ¬c) was removed (FORGET) after moving it to ρ (so ρ2 = ρ1 \ {(¬a ∨ ¬c)},

ϕ2 = ϕ1, and σ2 = σ1), then adding (c ∨ ¬b) to ρ via LEARN would be allowed

(ρ3 = ρ2 \ {(¬c ∨ ¬b)}, ϕ3 = ϕ2, and σ3 = σ2) since (c ∨ ¬b) has RT on c w.r.t.

ϕ3∧ρ3. Now ϕ3∧ρ3∧CNF(σ3) is unsatisfiable, where CNF(σ3) is the conjunction of

clauses in σ3. Yet this does not cause a problem. The reconstruction method ensures that

for every assignment satisfying ϕ a model of the original formula F can be constructed.

Thus it also holds for assignments that satisfy ϕ ∧ ρ. This illustrates that LEARN may

add clauses to ρ that are not entailed by the clauses in the original formula.

Clause Learning based on conflict graphs, which is central in modern CDCL solvers,

can be simulated by the inprocessing rules. Since any conflict clause based on a con-

flict graph is derivable by trivial resolution from the current clause database [25], the

inprocessing rules can simulate clause learning by simulating the steps of the resolution

derivation, as explained next.



Resolution can also be simulated by the inprocessing rules in a straightforward way:

For anyϕ, (C∨D) is anAT w.r.t.ϕ∧(C∨x)∧(D∨¬x), and thus (C∨D) can be learned

by applying LEARN. This implies that all resolution-based simplification techniques

can also be simulated. An example is Hyper Binary Resolution (HBR) [3]: Given a

clause of the form (l ∨ l1 · · · ∨ lk) and k binary clauses of the form (l′ ∨ ¬li), where

1 ≤ i ≤ k, the hyper binary resolution rule allows to infer the hyper binary resolvent

(l ∨ l′) in one step. In essence, HBR simply encapsulates a sequence of specifically

related resolution steps into one step.

Variable Elimination (VE) can also be simulated by our inprocessing rules. When

applied in a bounded setting [7], VE is currently one of the most effective preprocessing

techniques applied in SAT solvers. Variable elimination as a general version of VE for

inprocessing can be characterized as the rule

ϕ ∧ ϕx ∧ ϕ¬x [ ρ ∧ ρx ∧ ρ¬x ]σ

ϕ ∧ ϕx ⊗x ϕ¬x [ ρ ]σ, x:ϕx,¬x:ϕ¬x

,

where Fl denotes the clauses in a CNF formula F that contain literal l, and Fl ⊗l F¬l

is the lifting of the resolution operator to sets of clauses. Essentially, VE eliminates a

variable x by producing all possible resolvents w.r.t. x, and removes at the same time

all clauses containing x. Although not discussed in earlier work, our characterization

takes into account the common practice that resolvents due to redundant clauses in ρ do

not need to be produced.

To see that our inprocessing rules simulate VE, first apply LEARN to add the resol-

vents ϕx ⊗ ϕ¬x to ρ (all resolvents have AT w.r.t. ϕ). Second, apply STRENGTHEN to

move the resolvents from ρ to ϕ. Now all clauses in ϕx have RS on x w.r.t. ϕ, and all

clauses in ϕ¬x have RS on ¬x w.r.t. ϕ, and hence WEAKEN can be applied for making

the clauses in ϕx and ϕ¬x redundant, after which they can be removed using FORGET.

Notice that two variants of VE are distinguished [7]. The first, VE by clause dis-

tribution adds all the clauses of ϕx ⊗ ϕ¬x to ϕ. The second, VE by substitution adds

only a subset of ϕx ⊗ ϕ¬x to ϕ in a satisfiability-preserving way. As a consequence,

the latter variant may reduce the amount of unit propagations in the resulting formula

compared to the former. However, under the inprocessing rules, the clauses produced

by clause distribution but not by substitution can alternatively be added to ρ instead of

ϕ, so that these clauses can be used subsequently for unit propagation but can still be

considered redundant and thus be ignored in consecutive VE steps.

Partial Variable Elimination, as described below, is a novel variant of VE, which

can also be naturally expressed via our inprocessing rules. Given a variable x and two

subsets of clauses Sx ⊂ ϕx and S¬x ⊂ ϕ¬x, if there are non-empty Sx and S¬x such

that all resolvents of Sx ⊗ (ϕ¬x \ S¬x) and S¬x ⊗ (ϕx \ Sx) are tautologies, then we

can apply VE partially by replacing Sx ∧ S¬x in ϕ by Sx ⊗ S¬x. We refer to this as

Partial Variable Elimination (PVE). In practice, the VE rule is bounded by applying

it only when the number of clauses is not increased. It is actually possible that PVE
on x decreases the number of clauses, e.g., if |Sx| = 1 or |S¬x| = 1, while VE on

x would increase the number of clauses. The correctness of PVE is immediate by the

inprocessing rules, using a similar argument as in the case of VE.



Extended Resolution can also be simulated. This shows that LEARN, although perhaps

not evident by its simple definition, is extremely powerful even when restricting the

precondition to RAT only.

For a given CNF formula F , the extension rule [23] allows for iteratively adding

definitions of the form x ≡ a ∧ b (i.e. the CNF formula (x ∨ ¬a ∨ ¬b) ∧ (¬x ∨ a) ∧
(¬x∨b)) to F , where x is a new variable and a, b are literals in the current formula. The

resulting formulaF ∧E then consists of the original formulaF and the extension E, the

conjunction of the clauses iteratively added to F using the extension rule. In Extended

Resolution [23] one can first apply the extension rule to add a conjunction of clauses

(an extension) E to a CNF formula F , before using the resolution rule to construct a

resolution proof of F ∧ E. This proof system is extremely powerful: surpassing the

power of Resolution, it can even polynomially simulate extended Frege systems.

However, it is easy to observe that the LEARN rule simulates the extension rule: the

clause (x∨¬a∨¬b) has RAT on x w.r.t. ϕ∧ ρ and can thus be added to ρ by applying

LEARN. The clauses (¬x∨a) and (¬x∨b) have RAT on ¬x w.r.t. ϕ∧(x∨¬a∨¬b)∧ρ.

From a practical perspective, it follows that our inprocessing framework captures

also the deduction applied in the recently proposed extensions of CDCL solvers that

apply the Extension rule in a restricted fashion [26,27].

Finally, we would like to point out that the inprocessing rules capture various additional

techniques that have proven important in practice. While we are unable (due to the page

limit) to provide a more in-depth account of these techniques and how they are simu-

lated by the inprocessing rules, such techniques include (as examples) self-subsumption

(which has proven important both when combined with variable elimination [7] and

when applied during search [28,29]), equivalence reasoning [24,3], including e.g. equiv-

alent literal substitution, and also more recent techniques that can be defined for remov-

ing and adding literals from/to clauses (such as hidden literal elimination [13]).

8 Conclusion

Guaranteeing correctness of new inference techniques developed and implemented in

state-of-the-art SAT solvers is becoming increasingly non-trivial as complex combi-

nations of inference techniques are implemented within the solvers. We presented an

abstract framework that captures the inference of inprocessing SAT solvers via four

clean inference rules, providing a unified generic view to inprocessing, and furthermore

captures sound solution reconstruction in a unified way. In addition to providing an in-

depth understanding of the inferences underlying inprocessing solvers, we believe that

this framework opens up possibilities for developing novel inprocessing and learning

techniques that may lift the performance of SAT solvers even further.
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