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Abstract. When augmented with a Pseudo-Boolean (PB) solver, a Boolean sat-
isfiability (SAT) solver can apply apply powerful reasoning methods to determine
when a set of parity or cardinality constraints, extracted from the clauses of the
input formula, has no solution. By converting the intermediate constraints gen-
erated by the PB solver into ordered binary decision diagrams (BDDs), a proof-
generating, BDD-based SAT solver can then produce a clausal proof that the input
formula is unsatisfiable. Working together, the two solvers can generate proofs of
unsatisfiability for problems that are intractable for other proof-generating SAT
solvers. The PB solver can, at times, detect that the proof can exploit modular
arithmetic to give smaller BDD representations and therefore shorter proofs.

1 Introduction

Like all complex software, modern satisfiability (SAT) solvers are prone to bugs. In
seeking to maximize their performance, developers may attempt optimizations that are
either unsound or incorrectly implemented. Requiring a solver to be formally verified
is not feasible for current solvers. On the other hand, ensuring that each execution of
the solver yields the correct result has become a standard requirement. For a satisfiable
formula, the solver can generate a purported solution, and this can be checked directly.
For an unsatisfiable formula, the solver can produce a proof of unsatisfiability in a
logical framework that enables checking by an efficient and trusted proof checker. Proof
generation is a vital capability when SAT solvers are used for formal correctness and
security verification, and for mathematical theorem proving.

Most high-performance, proof-generating SAT solvers are based on conflict-driven,
clause-learning (CDCL) algorithms [42]. Although the methods used by earlier solvers
were limited to steps that could be justified within a resolution framework [43, 52],
modern solvers employ a variety of optimizations that require a more expressive proof
framework, with the most common being Deletion Resolution Asymmetric Tautology
(DRAT) [31,50]. Like resolution proofs, a DRAT proof is a clausal proof consisting of a
sequence of clauses, each of which preserves the satisfiability of the preceding clauses.
An unsatisfiability proof starts with the clauses of the input formula and ends with an
empty clause, indicating logical falsehood. The fact that this clause can be derived from
the original formula proves that the original formula cannot be satisfied.
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Even with the capabilities of the DRAT framework, some solvers employ reasoning
techniques for which they cannot generate unsatisfiability proofs. A number of SAT
solvers can extract parity constraints from the input clauses and solve these as linear
equations over the integers modulo 2 [6, 30, 37, 47]. Some can also detect and reason
about cardinality constraints [6]. However, all these programs revert to standard CDCL
when proof generation is required. To overcome the proof-generating limitations of cur-
rent solvers, some have suggested using more powerful proof frameworks, for example,
based on pseudo-Boolean constraints [27] or Binary Decision Diagrams [5]. Staying
with DRAT avoids the need to develop, certify, and deploy new proof systems, file
formats, and checkers.

Current CDCL solvers do not use the full power of the DRAT framework. In par-
ticular, DRAT supports adding extension variables to a clausal proof, in the style of
extended resolution [48]. These variables serve as abbreviations for formulas over ex-
isting input and extension variables. Compared to standard resolution, allowing exten-
sion variables can yield proofs that are exponentially more compact [19], and the same
holds for the extension rule in DRAT. In general, however, CDCL solvers have been un-
able to exploit this capability, with the exception that some of their preprocessing and
inprocessing techniques [8, 34] require extension variables [39]. One solver attempted
to introduce extension variables as it operated [3], but it achieved only modest success.

In 2006, Biere, Jussila, and Sinz demonstrated that the underlying logic behind al-
gorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) [10]
can be encoded as steps in an extended resolution framework [35, 46]. By introducing
an extension variable for each BDD node generated, the logic for each recursive step of
standard BDD operations can be expressed with a short sequence of proof steps. BDDs
provide a systematic way to exploit the power of extension variables. The recently de-
veloped solver PGBDD [11, 12] (for “proof-generating BDD”) builds on this work with
a more general capability for existentially quantifying variables. It can generate unsat-
isfiability proofs for several classic challenge problems for which the shortest possible
standard resolution proofs are of exponential size.

We show that BDDs can provide a bridge between pseudo-Boolean reasoning and
clausal proofs. Pseudo-Boolean (PB) constraints have the form

∑
j=1,n aj xjBb, where

each variable xj can be assigned value 0 or 1, the coefficients aj and constant b are
integers, and the relation symbol B is either =, ≥, or ≡ mod r for some modulus r.
Both parity and cardinality constraints can be expressed as PB constraints. A PB solver
can employ Gaussian elimination or Fourier-Motzkin elimination [21, 51] to determine
when a set of constraints is unsatisfiable. Our newly developed program PGPBS (for
“proof-generating pseudo-Boolean solver”) augments PGBDD with a pseudo-Boolean
solver, combining the power of PB reasoning with DRAT proof generation.

To enable proof generation, the PB solver generates BDD representations of its in-
termediate constraints and has proof-generating BDD operations construct proofs that
each of these constraints is logically implied by previous constraints. When the PB
solver reaches a constraint that cannot be satisfied, e.g., the equation 0 = 2, the con-
straint will be represented by the false BDD leaf⊥, which yields a proof step consisting
of the empty clause. The resulting proof is checkable within the DRAT framework with-
out any reference to pseudo-Boolean constraints or BDDs. Barnett and Biere [5] also
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proposed using BDDs when proving that the constraints generated by a PB solver were
logically implied by their predecessors, but they proposed doing so in a separate proof
framework rather than as the solver operates.

As an optimization, the PB solver can automatically detect cases where the unsatis-
fiability proof for an integer-constraint problem can use modular arithmetic. This leads
to more compact BDD representations, and therefore shorter proofs.

We demonstrate the power of PGPBS’s combination of BDDs and pseudo-Boolean
reasoning by showing that that it can achieve polynomial scaling on two classes of
problems for which CDCL solvers have exponential performance. These include parity
constraints involving exclusive-or operations [17, 49] and cardinality constraints, in-
cluding the mutilated chessboard [2] and pigeonhole problems [29]. Although PGBDD
on its own can also achieve polynomial scaling for both classes of problems, incorporat-
ing pseudo-Boolean reasoning makes the solver much more robust. It can handle wider
variations in the problem definition, how the problem is encoded as clauses, and the
BDD variable ordering. It also operates with greater automation, requiring no guidance
or hints from the user. These capabilities eliminate major shortcomings of PGBDD.

2 Pseudo-Boolean Constraints

Let xj , for 1 ≤ j ≤ n, be a set of variables, each of which may be assigned value
0 or 1, and aj , for 1 ≤ j ≤ n, be a set of integer coefficients. Constant b is also an
integer. A pseudo-Boolean constraint is of the form

∑
j=1,n aj xj B b, with B defining

the relation between the left-hand weighted sum and the right-hand constant. For an
integer equation, B is =, i.e., the two sides must be equal. For an ordering constraint,
B is ≥. For a modular equation, B is ≡ mod r, where r is the chosen modulus.

Three constraint types are of special importance for solving cardinality problems.
An at-least-one (ALO) constraint is an ordering constraint with aj ∈ {0,+1} for all
j, and b = +1. An at-most-one (AMO) constraint is an ordering constraint with aj ∈
{−1, 0} for all j, and b = −1. An exactly-one constraint is an integer equation with
aj ∈ {0,+1} for all j and b = +1.

2.1 BDD Representations

Many researchers have investigated the use of BDDs to represent pseudo-Boolean con-
straints [1,24,33]. As examples, Figure 1 shows BDD representations of the three forms
of constraints for n = 10 and b = 0, with aj = +1 for odd values of j and −1 for even
values. The modular equation has r = 3. The BDDs for both the integer equation
(A) and ordering constraint (B) have an increasing number of nodes at each level for
the first n/2 levels, with a node at level k for each possible value of the prefix sum∑

j=1,k−1 aj xj . As the level k approaches n, however, the number of nodes at each
level decreases. If a prefix sum becomes too extreme on the negative side, it becomes
impossible for the remaining values to cause the sum to reach b = 0. For the integer
equation, a similar phenomenon happens if a prefix sum becomes too extreme on the
positive side. For an ordering constraint, a sufficiently positive prefix sum will guaran-
tee that the total sum will be at least 0. For the modular sum (C), the number of nodes
at any level cannot exceed r—one for each possible value of the prefix sum modulo r.
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Fig. 1. Example BDD representations of pseudo-Boolean equations and ordering constraints.
Solid (respectively, dashed) lines indicate the branch when the variable is assigned 1 (resp., 0).
The leaf representing the false Boolean constant ⊥ and its incoming edges are omitted.

Letting amax = max1≤j≤n |aj |, the BDD representation of an integer equation or
ordering constraint will have at most 2 amax · n nodes at any level, while the repre-
sentation of a modular equation will have at most r nodes at any level. Although large
values of amax (amax � n), can cause the BDDs to be of exponential size [1, 33], our
use of them will assume that both amax and r are small constants. The BDD represen-
tations will then be O(n2) for integer equations and ordering constraints, and O(n) for
modular equations. These bounds are independent of the BDD variable ordering.

Most BDD operations are implemented via the Apply algorithm [10], recursively
traversing a set of argument BDDs to either construct a new BDD or to test some prop-
erty of existing ones. The BDDs representing pseudo-Boolean constraints are levelized:
every branch from a node at level j goes to a leaf node or to a node at level j + 1. We
can therefore derive a bound on the maximum number of recursive steps to perform an
operation on k argument BDDs, assuming both amax and r are small constants. Due to
the caching of intermediate results, the maximum number of steps at each level will be
bounded by the product of the number of argument nodes at this level. The operation
will therefore have worst-case complexity O(nk+1) for integer equations and ordering
constraints, while it will have complexity O(k · n) for modular equations.

2.2 Solving Systems of Equations with Gaussian Elimination

We use a formulation of Gaussian elimination that scales each derived equation, rather
than dividing by the pivot value [4, 44]. Performing the steps therefore requires only
addition and multiplication. This allows maintaining integer coefficients and automati-
cally detecting a minimum, possibly non-prime, modulus for equation solving.
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Consider a system of integer or modular equations E, where each equation ei ∈ E,
is of the form

∑
j=1,n ai,j xj = bi. Applying one step of Gaussian elimination involves

selecting a pivot, consisting of an equation es ∈ E and a variable xt such that as,t 6= 0.
Then an equation e′i is generated for each value of i:

e′i =

{
ei ai,t = 0
−ai,t · es + as,t · ei, ai,t 6= 0

(1)

where operations + and · denote addition and scalar multiplication of equations. Ob-
serve that a′i,t = 0 for all equations e′i. Letting E ← {e′i|i 6= s}, this step has reduced
both the number of equations in E and the number of variables in the equations by one.

Repeated applications of the elimination step will terminate when either 1) all equa-
tions have been eliminated, or 2) an unsolvable equation is encountered. For case 1,
the system has solutions, but these may, in general, assign values other than 0 and 1
to the variables. (Importantly, parity constraints are represented by modular equations
with r = 2. Their solutions will be 0-1 valued, and so a SAT solver can make use of
them [30, 37].) For case 2, if some elimination step generates an equation of the form
0 = b with b 6= 0, then this equation has no solution in any case, and therefore neither
did the original system. Our proofs of unsatisfiability rely on reaching this condition.

For the modular case, all coefficients and the constants are kept within the range 0 to
r − 1. For integer equations, the coefficients can grow exponentially in m. Fortunately,
the cardinality problems we consider only require coefficient values −1, 0, and +1.

As we have seen, the BDD representations of modular equations have bounded
width, making them both more compact and making the algorithms that operate on
them more efficient than for integer equations. As we will see, the unsatisfiability proof
generated by applying Gaussian elimination to a system of modular equations can be
significantly more compact than for the same equations over integers. This gives rise to
an optimization we call modulus auto-detection. The idea is to apply Gaussian elimi-
nation to a set of integer equations, recording the dependencies between the equations
generated, but without performing any proof generation. Once the solver reaches an
equation of the form 0 = b where b 6= 0, it chooses the smallest r ≥ 2 such that
b mod r 6= 0. It then generates a proof, reinterpreting the Gaussian elimination steps
using modulo-r arithmetic. Since the only operations of (1) are multiplication and ad-
dition, the final equation will be 0 ≡ b (mod r), which has no solution. Here we can
see that allowing r to be composite is both valid and may be optimal. For example, the
smallest choice for b = 30 would be r = 4, rather than the prime r = 7. Auto-detection
can be applied whenever Gaussian elimination encounters an unsolvable equation.

2.3 Solving Systems of Ordering Constraints with Fourier-Motzkin Elimination

Consider a setC, consisting of constraints ci of the form
∑

j=1,n ai,j xj ≥ bi. Applying
one step of Fourier-Motzin elimination [21, 51] to this system involves identifying a
pivot, consisting of a variable xt such that ak,t 6= 0 for at least one value of k. The set is
partitioned into three sets by assigning each constraint ci to C+, C−, or C0, depending
on whether coefficient ai,t is positive, negative, or zero, respectively. For each pair i
and i′ such that ci ∈ C+ and ci′ ∈ C−, a new constraint ci,i′ is generated as:

ci,i′ = −ai′,t · ci + ai,t · ci′ (2)
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Fig. 2. Overall Structure of PGPBS. It augments the BDD-based SAT solver PGBDD with infer-
ences from a pseudo-Boolean constraint solver. The constraint extractor is a separate program.

(Note that the multiplication is always by positive values, since ai′,t < 0.) Letting
C ← C0 ∪ {ci,i′ | ci ∈ C+, ci′ ∈ C−}, all of these constraints have coefficient 0 for
variable xt. Therefore this step has reduced the number of variables in the constraints
by one, but it may have increased the number of constraints.

As with Gaussian elimination, repeated application of the elimination step will ter-
minate when either 1) all variables have been eliminated or 2) an unsolvable constraint
is encountered. With case 1, the constraints can be satisfied, although possibly by as-
signing values other than 0 or 1 to some of the variables. An unsolvable constraint (case
2) is one where the sum of the positive coefficients is less than the constant term. If such
a constraint is encountered, then the original system of constraints has no solution.

Fourier-Motzkin elimination would appear to be hopelessly inefficient. The number
of constraints can grow exponentially as the elimination proceeds, and the coefficients
can grow doubly exponentially. Fortunately, the cardinality problems we consider have
the property that for any variable xt, there is at most one constraint ci having ai,t =
+1, at most constraint ci′ having ai′,t = −1, and no other constraint with a non-zero
coefficient at position t. This property is maintained by each elimination step, and so
the number of constraints will decrease with each step, and the coefficients will be
restricted to the values −1, 0, and +1.

3 Overall Operation

Figure 2 illustrates the program structure. The pair of programs—extractor and solver—
supports the standard flow for proof-generating SAT solvers, reading the input conjunc-
tive normal form (CNF) formula expressed in the standard DIMACS format and gen-
erating proofs in the standard DRAT format. No other guidance or hint is provided.
The constraint extractor identifies pseudo-Boolean constraints encoded as clauses in
the input file and generates a schedule indicating how clauses should be combined and
quantified to derive BDD representations of the constraints. PGPBS augments the SAT
solver PGBDD with a PB solver. PGBDD supplies the constraints to the PB solver, which
applies either Gaussian elimination or Fourier-Motzkin elimination. The PB solver gen-
erates BDD representations of the constraints it generates, and, since the BDD library
generates proof steps while performing BDD operations, it can generate a proof that
each new constraint is logically implied by previous constraints. When the PB solver en-
counters an unsolvable constraint, an empty clause is generated, completing the proof.
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(A)
Exclusive-Or/Nor

CLAUSES

-1 2 6 0
1 -2 6 0
1 2 -6 0
-1 -2 -6 0
3 6 7 0
-3 -6 7 0
-3 6 -7 0
3 -6 -7 0

(B)
Exactly-one, direct encoding

CLAUSES

1 2 3 4 0
-1 -2 0
-1 -3 0
-1 -4 0
-2 -3 0
-2 -4 0
-3 -4 0

(C)
At-most-one, Sinz encoding [45]

CLAUSES

-1 5 0
-2 5 0
-1 -2 0
-5 -3 0
-5 6 0
-3 6 0
-6 -4 0

SCHEDULE

c 1 2 3 4
a 3
=2 0 1.1 1.2 1.6
c 5 6 7 8
a 3
=2 1 1.3 1.6 1.7

SCHEDULE

c 1 2 3 4 5 6 7
a 6
= 1 1.1 1.2 1.3 1.4

SCHEDULE

c 1 2 4 5
a 3
q 5
c 6 7
a 2
q 6
c 3
a 1
>= -1 -1.1 -1.2 -1.3 -1.4

Fig. 3. Examples of pseudo-Boolean constraints extracted from CNF representations. Schedules
use a stack notation indicating clauses, conjunction and quantification operations, and constraints.

3.1 Constraint Extraction

The constraint extractor uses heuristic methods to identify how the input clauses
match standard patterns for exclusive-or/nor, ALO, and AMO constraints. The heuris-
tics are independent of any ordering of the clauses or variables, although they do de-
pend on the polarities of the literals. The generated schedule indicates how to combine
clauses and to quantify variables to give the different constraints. The schedule uses a
stack notation, having the following commands:

c c1, . . . , ck Generate and push the BDDs for the specified clauses.
a m Pop the top m+ 1 elements. Combine with m AND

operations. Push the result.
q v1, . . . , vk Quantify the top element by the specified variables.
C b a1.v1, . . . , ak.vk Confirm that the top stack element implies the constraint

The different constraint types C are ‘=’ for integer equations, ‘=2’ for mod-2 equations,
and ‘>=’ for integer orderings. Each constraint line lists the constant b and then indicates
the non-zero terms as a combination of coefficient and variable, separated by ‘.’.

Figure 3 provides a series of examples illustrating the operation of the extractor. A
k-way exclusive-or or exclusive-nor (A) is encoded with 2k−1 clauses (here k = 3),
listing all combinations of the negated variables having even (XOR) or odd (XNOR)
parity. The schedule lists the clause numbers, forms their conjunction, and indicates a
mod-2 equation. The constant b is 1 for exclusive-or and 0 for exclusive-nor.
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An exactly-one constraint (B) can be expressed as a combination of an ALO con-
straint and an AMO constraint. The extractor assumes that any clause with all literals
having positive polarity encodes an ALO constraint. In this example, a k-way AMO
constraint (k = 4) is encoded directly as a set of k (k − 1)/2 binary clauses.

An AMO constraint can be also encoded with auxiliary variables (B) in variety
of ways, including that devised by Sinz [45]. The extractor examines how variables
occur in binary clauses. Those that occur only with negative polarity are assumed to be
constraint variables, while those that have mixed polarity are assumed to be auxiliary
variables. As is shown, the generated schedule for an AMO constraint encoded with
auxiliary variables employs early quantification [13] to linearize the conjuncting of
clauses and the quantification of auxiliary variables.

The heuristics used for identifying auxiliary variables and partitioning the clauses
into distinct constraints apply to a wide range of AMO constraints, including those us-
ing hierarchical encodings [16, 36] and those considered in other constraint extraction
programs [9]. Our method can be overly optimistic, labeling some subsets of clauses
incorrectly. Fortunately, any such error will be quickly identified when the solver at-
tempts to prove that the BDD generated by conjuncting the clauses and quantifying the
auxiliary variables implies the BDD generated for the constraint.

3.2 Solver Operation

The SAT solver portion of PGPBS can generate BDD representations of input clauses
and perform conjunction and existential quantification operations on BDDs [11, 12].
As the solver manipulates BDDs to track the solution state, it also generates clauses
according to resolution and extension proof rules. The state of the solver at any time is
captured by a set of terms T1, T2, . . . , Tn, where each term Ti consists of:

– A root node ui in the BDD.
– The extension variable associated with this node, also written as ui.
– A unit clause, included in the proof clauses, consisting of extension variable ui,

asserting that the Boolean function represented by BDD node ui evaluates to true
for any variable assignment that satisfies the input clauses.

– Implicitly, the set θ(ui) of all defining clauses that were added to the proof when
introducing the extension variables for the nodes in the BDD subgraph having root
ui. These are included in the generated clauses and provide the semantic model for
the BDD within the proof framework.

The BDD package supports proof-generating BDD operations APPLYAND, used to
perform conjunction, and PROVEIMPLICATION, used to generate proofs of implication.
The APPLYAND operation takes as arguments BDD roots u and v, and it generates
a BDD representation with root w of their conjunction. It also generates a proof of
the clause u ∨ v ∨ w, proving the implication u ∧ v → w. The PROVEIMPLICATION
operation performs implication testing without generating any new BDD nodes. It takes
as arguments BDD roots u and v, and it generates a proof of the clause u ∨ v, proving
that u→ v. An error is signaled if the implication does not hold.

When the solver encounters a clause command in the schedule file, it generates a
term Ti for each of the specified input clauses Ci and pushes the term onto a stack. It
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also generates the proof θ(ui), Ci ` ui, i.e., that function represented by BDD node ui
will evaluate to true for any variable assignment that satisfies the clause.

When the solver encounters a conjunction or quantification command, it creates a
new term by performing the specified operation and proving that it is implied by earlier
terms. Given newly generated BDD root un+1, it must prove that un+1 is implication
redundant with respect to the existing terms. That is, if un+1 was generated by applying
some operation to terms Ti1 , Ti2 , . . . , Tik , then it must generate a proof of the clause
ui1 ∨ ui2 ∨ · · · ∨ uik ∨ un+1. This clause can then be resolved with the unit clauses
associated with the existing terms to yield the unit clause un+1, allowing a new term
Tn+1 to be added. If some step generates a term Tn+1 with BDD representation un+1 =
⊥, it will also generate the empty clause, completing a proof of unsatisfiability.

The PB solver portion of PGPBS can generate BDD representations of the inter-
mediate constraints it creates. The SAT solver generates a new term for each of these
BDDs. The proof generator need not have any understanding of the operation of the PB
solver, and vice-versa. Suppose some set of input clauses encodes a pseudo-Boolean
constraint, possibly using auxiliary variables, as was illustrated in Figure 3. The SAT
solver performs the series of conjunction and quantification operations specified by the
schedule to reduce the clauses to a single term Tn consisting of BDD root un and unit
clause un. The auxiliary variables have been quantified away, and so un depends only
on the constraint variables. It passes the constraint to the PB solver, which generates
its BDD representation with root un+1. The SAT solver uses the PROVEIMPLICATION
operation to generate the clause un ∨ un+1. This can be resolved with unit clause un
to generate the unit clause un+1, and so the BDD representation of the constraint be-
comes term Tn+1. (Typically, the two BDDs are identical and so the implication holds
trivially.) This process is repeated to convert the input formula into a set of pseudo-
Boolean constraints, each represented as a term in the SAT solver.

Once the SAT solver has converted all of the input clauses into constraints, it passes
control to the PB solver. From that point on, the SAT solver serves in a support role,
generating proofs to justify the steps of the PB solver. As the PB solver operates, it gen-
erates a BDD representation of each new constraint: for each equation e′i generated by
Gaussian elimination (1) or each ordering constraint ci,i′ generated by Fourier-Motzkin
elimination (2). For a new BDD with root un+1 generated from constraints represented
by terms Ti and Tj , it uses the APPLYAND operation to generate the conjunction w
of the BDDs with roots ui and uj , as well as a proof of the clause ui ∨ uj ∨ w. It
then uses the PROVEIMPLICATION operation with arguments w and un+1 to generate
a proof of the clause w ∨ un+1. It can then resolve the unit clauses for terms Ti and Tj
with the generated clauses to generate a proof of the unit clause un+1, and so the BDD
representation of the constraint becomes term Tn+1. When some step of the PB solver
generates an unsolvable equation or ordering constraint, it encodes the constraint as the
false BDD leaf ⊥, and the SAT solver will generate the empty clause.

As an optimization, we implemented an operation APPLYANDPROVEIMPLICATION
combining the functions of APPLYAND and PROVEIMPLICATION. It takes as arguments
BDD roots u, v, and w and generates a proof that u ∧ v → w without constructing the
BDD representation of u∧ v. We found this reduced the total proof lengths by over 2×.
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Fig. 4. Total number of clauses in proofs of two sets of Urquhart formulas.

4 Experimental Results

PGPBS is written in Python with its own BDD package and pseudo-Boolean constraint
solver.3 The Gaussian elimination solver employs a standard greedy pivot selection
heuristic, attributed to Markowitz [23, 41], that seeks to minimize the number of non-
zero coefficients created. The Fourier-Motzin solver uses a similar heuristic for select-
ing pivot variables.

The operation of PGPBS follows the flow illustrated in Figure 2, with constraints
extracted directly from the input CNF file, and with the generated schedule driving the
operation of the solver. Some measurements were taken using a BDD variable ordering
according to their numbering in the input file, while others used a random BDD variable
ordering to assess the sensitivity to the variable ordering. All generated proofs were
checked with an LRAT proof checker [20]. We used KISSAT, winner of the 2020 SAT
competition [7], as a representative CDCL solver. All measurements labeled “PGBDD”
are for the earlier version of the solver, without pseudo-Boolean reasoning [11, 12].

We measure the performance of the solvers in terms of the total number of clauses
in the generated proofs of unsatisfiability. This metric tracks closely with the solver
runtime and has the advantage that it is machine independent. We set an upper limit of
100 million clauses for the proof sizes for the three measured solvers.

4.1 Urquhart Parity Formulas

Urquhart [49] defined a family of formulas that require resolution proofs of exponential
size. Over the years, two sets of SAT benchmarks have been labeled as “Urquhart Prob-

3 PGPBS, PGBDD, and the code for generating and testing a set of benchmarks, are available at
https://github.com/rebryant/pgpbs-artifact and as https://doi.org/10.5281/zenodo.5907086.

https://github.com/rebryant/pgpbs-artifact
https://doi.org/10.5281/zenodo.5907086
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lems” [15, 38]. The formulas are defined over a class of degree-5, undirected, bipartite
graphs, parameterized by a size m, such that the number of nodes in the graph is 2m2.
To transform a graph into a formula, each edge {i, j} in the set of edges E has an as-
sociated variable x{i,j}. (We use set notation to emphasize that the order of the indices
does not matter.) Each vertex is assigned a polarity pi ∈ {0, 1}, such that the sum of
the polarities is odd. The clauses then encode that the sum for all values of i and j of
x{i,j} + pi equals 0 modulo 2. This is false of course, since each edge is counted twice
in the sum, and the sum of the polarities is odd.

The two families of benchmarks differ in how the graphs are constructed. Li’s
benchmarks are based on the explicit construction of expander graphs [26, 40], upon
which Urquhart’s lower bound proof is based. Simon’s benchmarks are based on ran-
domly generated graphs and thus depend on the random seed. We generated five differ-
ent formulas for each value ofm. It is unlikely that Simon’s graphs satisfy the expander
property, but they are still very challenging benchmarks for most SAT solvers.

Figure 4 shows the performance of the solvers, measured as the number of clauses
as a function of m, for both Simon’s and Li’s benchmarks. The smallest instances of
the benchmark have m = 3. As can be seen KISSAT is able to generate proofs for the
Simon version for four cases with m = 3 and one with m = 4, but it is unable to
handle any other cases, including not even the minimum instance for Li’s benchmark.
Measurements are shown for PGBDD running bucket elimination, a simple algorithm
that processes clauses and intermediate terms with conjunction and quantification oper-
ations according to the levels of the topmost variables [22, 35]. It achieves polynomial
scaling on both benchmarks, with only mild sensitivity to the random seeds. Running
PGPBS with modulo-2 equation solving improves the performance even further, such
that we were able to handle both families of benchmarks up to m = 48. Considering
that the problem grows quadratically in m, this represents a major improvement over
KISSAT.

4.2 Other Parity Constraint Benchmarks

Chew and Heule [17] introduced a benchmark based on Boolean expressions computing
the parity of a set of Boolean values x1, . . . , xn using two different orderings of the
inputs, with a randomly chosen variable negated in the second computation. The SAT
problem is to find a satisfying assignment that makes the two expressions yield the same
result—an impossibility due to the negated variable. With KISSAT, we found the results
were very sensitive to the choice of random permutation, and so we ran the solver for
five different random seeds for each value of n. We were able to generate proofs for
instances with n up to 47, but we also encountered cases where the proofs exceeded the
100-million clause limit starting with n = 40. The overall scaling is exponential.

Chew and Heule showed they could generate proofs for this problem that scale as
n log n. Using bucket elimination, PGBDD is able to obtain polynomial performance,
handling up to n = 3,000 with a proof of 61 million clauses. PGPBS is able to apply
Gaussian elimination with modulus r = 2, obtaining even better performance than did
Chew and Heule. For n = 10,000, Chew and Heule’s proof has 14 million clauses while
the proof generated by PGPBS has less than 7 million.
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Fig. 5. Total number of clauses in proofs of n× n mutilated chess board problems.

Elffers and Nordström created the TSEITINGRID family of benchmarks for the 2016
SAT competition, based on grid graphs having fixed width but variable lengths [25].
These are designed to be challenging for SAT solvers while having polynomial scaling.
The 2020 SAT competition included two instances of this benchmark, with 7×165 and
7 × 185 grids. None of the entrants could generate an unsatisfiability proof for either
instance within the 5000 second time limit. On the other hand, PGPBS can readily
handle both, generating proofs with less than 500,000 clauses and requiring at most 63
seconds. Indeed, PGPBS can solve the largest published instance, having a 7×200 grid,
in 76 seconds. Clearly, parity constraint problems pose no major challenge for PGPBS.

4.3 Variants of the Mutilated Chessboard

The mutilated chessboard problem considers an n× n chessboard, with the corners on
the upper left and the lower right removed. It attempts to tile the board with dominos,
with each domino covering two squares. Since the two removed squares had the same
color, and each domino covers one white and one black square, no tiling is possible.
This problem has been well studied in the context of resolution proofs, for which it can
be shown that any proof must be of exponential size [2].

The standard CNF encoding defines a Boolean variable for each possible horizon-
tal or vertical domino placement. For each square, it encodes an exactly-one constraint
for the set of dominos that could cover that square. Both the number of variables and
the number of clauses scale as Θ(n2). Figure 5 shows the performance of the different
solvers as a function of n. KISSAT scales exponentially, hitting the 100-million clause
limit with n = 20. The plot labeled “Column Scan” demonstrates that PGBDD per-
forms very well on this problem when given a carefully crafted schedule and the proper
variable ordering [11], requiring less than 20 million clauses for n = 128.



Clausal Proofs from Pseudo-Boolean Reasoning 13

4 8 16 32 64 128
103

104

105

106

107

108

n

Mutilated Chess Board/Torus Clauses

Board, PGBDD, Column Scan, Random Order
Torus, PGBDD, Column Scan, Input Order
Torus, PGPBS, Autodetect, Random Order
Board, PGPBS, Autodetect, Random Order

Fig. 6. Stress Testing: Changing the topology and variable ordering for mutilated chess. Autode-
tection enables the PB solver to use modulo-3 arithmetic.

The plot labeled “Integer Equations, Input Ordering” shows that PGPBS can achieve
polynomial scaling on this problem when performing Gaussian elimination on integer
equations. It does not scale as well as column scanning, reaching n = 96 before hitting
the clause limit. (The unevenness of the plot appears to be an artifact of the randomiza-
tion used to break ties during pivot selection.)

Looking deeper, we can see that solver avoids the worst-case performance for Gaus-
sian elimination on this problem. Let us assume that the omitted corners are both white,
and so the board has k black squares and k − 2 white squares, where k = n2/2. Each
variable occurs in one equation for a black square and in one for a white square. If we
were to sum all of the equations for the black squares, we would get

∑
j=1,m xj = k,

where m is the number of variables. Similarly, summing the equations for the white
squares gives

∑
j=1,m xj = k − 2. Subtracting the second equation for the first gives

the unsolvable equation 0 = 2. These sums and differences can be performed using
pseudo-Boolean equations with coefficients 0 and +1. Although Gaussian elimination
combines equations in a different order, it maintains the property that the coefficients
are limited to values −1, 0, and +1.

The plot labeled “Mod-3 Equations, Input Ordering” demonstrates the benefit of
modular arithmetic when solving systems of equations. The equation 0 = 2, obtained
by integer Gaussian elimination for this problem, has no solution for any odd modulus;
modulus auto-detection chooses r = 3. This optimization achieves better scaling, due
to the bounded width of the BDD representations. Indeed, it outperforms the best results
obtained with PGBDD, generating a proof with less than 8 million clauses for n = 128.
For the remaining measurements, we assume that modulus auto-detection is enabled.

The plots of Figure 6 illustrate how pseudo-Boolean reasoning makes PGPBS more
robust than PGBDD. First, we consider the extension of the mutilated chessboard prob-
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Fig. 7. Total number of clauses in proofs of pigeonhole problem for n holes

lem to a torus, with the sides of the board wrapping around both vertically and hor-
izontally. As the plot labeled “Torus, PGBDD, Column Scan, Input Order” indicates,
the performance of column scanning disintegrates for this seemingly minor change.
The compact state encoding exploited by column scanning works only when there is
a single frontier as the variables are processed from left to right. Second, the plot la-
beled “Board, PGBDD, Column Scan, Random Order” illustrates that column scanning
is highly sensitive to the chosen BDD variable ordering. On the other hand, the four
versions using auto-detected modular equations are only mildly sensitive to the topol-
ogy (torus or board) or the variable ordering (input or random). For both topologies, the
clause counts for the two different orderings (input and random) are so close to each
other that they cannot be distinguished on the log-log scale. and so we show only the
results for random orderings. These results show that pseudo-Boolean reasoning over-
comes several major weaknesses of the pure Boolean methods of PGBDD. With its PB
solver, PGPBS requires no guidance from the user regarding how to process the clauses,
nor does it require any guidance or heuristics to choose a good BDD variable ordering.
Furthermore, it is less sensitive to the problem definition.

4.4 Pigeonhole Problem

The pigeonhole problem is one of the most studied problems in propositional reasoning.
Given a set of n holes and a set of n+1 pigeons, it asks whether there is an assignment of
pigeons to holes such that (1) every pigeon is in some hole, and (2) every hole contains
at most one pigeon. The answer is no, of course, but any resolution proof for this must
be of exponential length [29].
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The problem can be encoded into CNF with Boolean variables pi,j , for 1 ≤ i ≤ n
and 1 ≤ j ≤ n + 1, indicating that pigeon j is placed in hole i. A set of n AMO
constraints indicates that each hole can contain at most one pigeon, and n + 1 ALO
constraints indicate that each pigeon must be placed in some hole. We experimented
with two different encodings for the AMO constraints: the direct encoding requiring
n (n+ 1)/2 clauses per hole, and the Sinz encoding [45], requiring 3n− 1 clauses.

Figure 7 shows the total number of clauses (input plus proof) as functions of n
for this problem. KISSAT performs poorly, reaching the 100-million clause limit with
n = 14 for the direct encoding and n = 15 for the Sinz encoding. Using PGBDD, we
were unable to find any strategy that gets beyond n = 16 with a direct encoding. Our
best results came from a “tree” strategy, simply forming the conjunction of the input
clauses using a balanced tree of binary operations. For the Sinz encoding, on the other
hand, we devised a column scanning technique similar to the method used to solve the
mutilated chessboard problem. This approach scales very well, empirically measured
as Θ(n3). The proofs stay below 100 million clauses up to n = 128, although it can
only reach n = 17 with a random variable ordering (plot not shown).

Using pseudo-Boolean reasoning with Fourier-Motzkin elimination, we were able
to achieve polynomial scaling, reaching n = 34 with both encodings and for both input
and random ordering. The four results are so similar that they are indistinguishable on a
log-log plot, and so we show the average for the two encodings with random orderings.
Observe that each variable pi,j occurs with coefficient −1 in the AMO constraint for
hole i and with coefficient +1 in the ALO constraint for pigeon j. Thus, as described in
Section 2.3, each step of Fourier-Motzkin elimination reduces the number of constraints
by at least one, with the coefficients restricted to the values −1, 0, and +1. Indeed, it
can be seen that the solver, in effect, sums the n AMO and n + 1 ALO constraints to
get the unsolvable constraint 0 ≥ 1. The scaling of proof sizes, empirically measured
as Θ(n5), is limited by the O(n2) growth of the BDD representations for the ordering
constraints, as was illustrated in Figure 1C.

The plot labeled “Sinz, PGPBS, Equations, Random Order” demonstrates the effect
of adding constraints to enforce exactly-one constraints on both the pigeons and the
holes. The solver applies modulus auto-detection to give a modulus of r = 2. Modulo-
2 reasoning enables the solver to match the performance of column scanning, with
the further advantages of being fully automated and being insensitive to the variable
ordering. However, it requires additional constraints in the input file.

Finally, the plot labeled “Direct, Cook’s Proof” shows the complexity of Cook’s
extended-resolution proof of the pigeonhole problem [19], encoded in DRAT format.
Although it is very concise for small values of n, its scaling as Θ(n4) lies between the
Θ(n3) achieved by column scanning and equation solving, and the Θ(n5) achieved by
constraint solving. Of these, only Cook’s proof and the solution by constraint solving
are directly comparable, in that only these use a direct encoding and have only the
minimum set of AMO and ALO constraints.

In summary, pseudo-Boolean reasoning makes this problem tractable with full au-
tomation, and it has minimal sensitivity to the variable ordering. Generating proofs by
solving systems of ordering constraints is more challenging than by solving automati-
cally detected modular equations, but both achieve polynomial scaling.
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4.5 Other Cardinality Constraint Problems

Codel et al. [18] defined a general class of problems that includes the mutilated chess-
board and the pigeonhole problems as special cases. Given a bipartite graph with ver-
tices L and R such that |L| < |R|, the problem is to find a perfect matching, i.e., a
subset of the edges such that each vertex has exactly one incident edge. For the muti-
lated chessboard, L andR correspond to the white and black squares, respectively, with
edges based on chessboard adjacencies. For pigeonhole, L corresponds to the holes and
R to the pigeons, and the graph is the complete bipartite graph Kn,n+1. No instance of
this matching problem has a solution, since the sets of nodes are of unequal size.

Twelve instances of this problem were included in the 2021 SAT competition, based
on randomly generated graphs with n = |L| ranging from 15 to 20 and with |R| =
n+1. Different methods were used to encode the AMO constraints, and some included
clauses to convert both sets of constraints into exactly-one constraints. In the compe-
tition, all of the solvers could easily handle the benchmarks with n = 15, most could
handle n = 16, with typical runtimes of around 1000 seconds, but none could solve
any of the larger problems. PGPBS can easily handle all of the benchmarks, requiring
at most 13 seconds and generating proofs with less than 500,000 clauses.

5 Conclusions

Incorporating pseudo-Boolean reasoning into a SAT solver enables it to handle classes
of problems encoded in CNF that are intractable for CDCL solvers. By having the PB
solver generate BDD representations of its intermediate results, a BDD-based, proof-
generating SAT solver can generate clausal proofs of unsatisfiability on behalf of the PB
solver in the standard, DRAT proof framework. Compared to the SAT solver operating
on its own, including a PB solver enables greater automation with less sensitivity to
problem definition, encoding method, and variable ordering.

We have shown that applying pseudo-Boolean reasoning to unsatisfiable instances
of parity and cardinality constraint problems can yield proofs that scale polynomially.
Solving systems of equations over the integers modulo 2 yields 0-1 valued solutions,
and so parity reasoning can also be used on satisfiable problems [6, 30, 37, 47]. On
the other hand, Gaussian elimination over integers or with modulus r > 2, as well
as Fourier-Motzkin elimination, are not guaranteed to find 0-1 valued solutions. When
seeking solutions with cardinality reasoning, it seems more effective to use methods
that adapt CDCL-based search to pseudo-Boolean constraints [14].

The method described here can be generalized to incorporate other reasoning meth-
ods into a proof-generating SAT solver. As long as intermediate results can be expressed
as BDDs, a proof can be generated that the result of each step logically follows from the
preceding steps. Thus, we could incorporate other pseudo-Boolean reasoning methods,
such as cutting planes [28, 32], or we could add totally different reasoning methods.
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