
An Empty Hexagon in Every Set of 30 Points

Marijn J.H. Heule

joint work with Manfred Scheucher

30th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems

Luxembourg April 8, 2024

Empty Hexagon 1 / 21

Points in General Position

A finite point set S in the plane is in general position if no
three points in S are on a line.

Throughout this talk, every set is in general position

Empty Hexagon 2 / 21

k-Holes

A k-hole (in S) is a convex k-gon containing no other points of S

5-hole not a 6-hole

h(k): the smallest number of points that contain a k-hole

For k fixed, does every sufficiently large point set in general
position contain k-holes?

Empty Hexagon 3 / 21

k-Holes Overview

For k fixed, does every sufficiently large point set in general
position contain k-holes?

▶ 3 points ⇒ ∃ 3-hole (trivial)

▶ 5 points ⇒ ∃ 4-hole [Klein ’32]

▶ 10 points ⇒ ∃ 5-hole [Harborth ’78]

▶ Arbitrarily large point sets with no 7-hole [Horton ’83]

Main open question: what about 6-hole?

▶ Sufficiently large point sets contain a 6-hole
[Gerken ’08 and Nicolás ’07, independently]

▶ Conjecture: h(6) = 30 (proved in TACAS’24 paper)

Empty Hexagon 4 / 21

Lowerbound for 4-Hole: h(4) > 4

Clearly, any 3-point set in general position has a 3-hole

Some sets with four points have no 4-hole, so h(4) > 4:

Empty Hexagon 5 / 21

Upperbound for 4-Hole: h(4) = 5 [Klein, 1930s]

Happy ending problem

Empty Hexagon 6 / 21

Upperbound for 4-Hole: h(4) = 5 [Klein, 1930s]

Happy ending problem

Empty Hexagon 6 / 21

Upperbound for 4-Hole: h(4) = 5 [Klein, 1930s]

Happy ending problem

Empty Hexagon 6 / 21

Upperbound for 4-Hole: h(4) = 5 [Klein, 1930s]

Happy ending problem

Empty Hexagon 6 / 21

Upperbound for 4-Hole: h(4) = 5 [Klein, 1930s]

Happy ending problem

Empty Hexagon 6 / 21

Upperbound for 4-Hole: h(4) = 5 [Klein, 1930s]

Happy ending problem

Empty Hexagon 6 / 21

Upperbound for 4-Hole: h(4) = 5 [Klein, 1930s]

Happy ending problem

Empty Hexagon 6 / 21

Lowerbound for 5-Hole: h(5) ≥ 10

All 5-gons in these 9 points have an inner point: h(5) = 10

Empty Hexagon 7 / 21

Lowerbound for 6-Hole: h(6) ≥ 30

29 points, no 6-hole [Overmars ’02]

▶ Found using simulated annealing... is now easy using SAT

▶ This contains 7-gons. Each 9-gon contains a 6-hole
Empty Hexagon 8 / 21

No Lowerbound for 7-Hole: Horton’s Construction

25 points, no 7-hole

Empty Hexagon 9 / 21

Orientation Variables

No explicit coordinates of points

Instead for every triple a < b < c,
one orientation variableOa,b,c to denote
whether point c is above the line ab

Triple orientations are enough
to express k-gons and k-holes

WLOG points are sorted from left to right

Not all assignments are realizable

▶ Realizability is hard [Mnëv ’88]

▶ Additional clauses eliminate
many unrealizable assignments

+

–

a
b

c

d

Empty Hexagon 10 / 21

Inside Variables

We introduce inside variables Ix;a,b,c which are true if and only
if point x is in the triangle abc with a < x < b or b < x < c.

Four possible cases:

a b

c

x

a b

c

x

a b

c

x

a b

c

x

The left two cases with a < x < b:

Ix;abc ↔ ((
Oabc → (Oaxb ∧Oaxc)

)
∧
(
Oabc → (Oaxb ∧Oaxc)

))
The right two cases with b < x < c:

Ix;abc ↔ ((
Oabc → (Oaxc ∧Obxc)

)
∧
(
Oabc → (Oaxc ∧Obxc)

))

Empty Hexagon 11 / 21

Inside Variables

We introduce inside variables Ix;a,b,c which are true if and only
if point x is in the triangle abc with a < x < b or b < x < c.

Four possible cases:

a b

c

x

a b

c

x

a b

c

x

a b

c

x

The left two cases with a < x < b:

Ix;abc ↔ ((
Oabc → (Oaxb ∧Oaxc)

)
∧
(
Oabc → (Oaxb ∧Oaxc)

))
The right two cases with b < x < c:

Ix;abc ↔ ((
Oabc → (Oaxc ∧Obxc)

)
∧
(
Oabc → (Oaxc ∧Obxc)

))
Empty Hexagon 11 / 21

Hole Variables

We introduce hole variables Habc which are true if and only if
no points occur with the triangle abc with a < b < c.

∧
a<x<c

Ix;abc → Habc

Simple 6-hole encoding:∨
a,b,c∈X Habc ∀ X ⊂ S with |X| = 6

Empty Hexagon 12 / 21

6-Hole Encoding: One Triangle-is-Empty Check Required

Trusted 6-hole encoding uses O(n6) clauses with 20 literals:∨
a,b,c∈X Habc ∀ X ⊂ S with |X| = 6

Example

Consider an assignment with

▶ Oabd = 0 and Obdf = 0

▶ Oace = 1 and Ocef = 1

a

b

c

d

e

f

Clause to prevent this: Oabd ∨Obdf ∨Oace ∨Ocef ∨Hade

This encoding is 5 times larger, but much easier to solve

Empty Hexagon 13 / 21

6-Hole Encoding: One Triangle-is-Empty Check Required

Trusted 6-hole encoding uses O(n6) clauses with 20 literals:∨
a,b,c∈X Habc ∀ X ⊂ S with |X| = 6

Example

Consider an assignment with

▶ Oabd = 0 and Obdf = 0

▶ Oace = 1 and Ocef = 1

▶ Hade = 1

This implies the existence of a 6-hole!

a

b

c

d

e

f

Clause to prevent this: Oabd ∨Obdf ∨Oace ∨Ocef ∨Hade

This encoding is 5 times larger, but much easier to solve

Empty Hexagon 13 / 21

6-Hole Encoding: One Triangle-is-Empty Check Required

Trusted 6-hole encoding uses O(n6) clauses with 20 literals:∨
a,b,c∈X Habc ∀ X ⊂ S with |X| = 6

Example

Consider an assignment with

▶ Oabd = 0 and Obdf = 0

▶ Oace = 1 and Ocef = 1

▶ Hade = 1

This implies the existence of a 6-hole!

a

b

c

d

e

f

Clause to prevent this: Oabd ∨Obdf ∨Oace ∨Ocef ∨Hade

This encoding is 5 times larger, but much easier to solve

Empty Hexagon 13 / 21

6-Hole Encoding: One Triangle-is-Empty Check Required

Trusted 6-hole encoding uses O(n6) clauses with 20 literals:∨
a,b,c∈X Habc ∀ X ⊂ S with |X| = 6

Example

Consider an assignment with

▶ Oabd = 0 and Obdf = 0

▶ Oace = 1 and Ocef = 1

▶ Hade = 1

This implies the existence of a 6-hole!

a

b

c

d

e

f

Clause to prevent this: Oabd ∨Obdf ∨Oace ∨Ocef ∨Hade

This encoding is 5 times larger, but much easier to solve

Empty Hexagon 13 / 21

k-Hole Encoding Using O(n4) Clauses

Shorter clauses, thus more propagation, but still O(n6)

Example

Introduce O(n3) auxiliary variables:

▶ Aacd: a 4-gon above the line ad

Oabc ∧Obcd → Aacd

▶ Bac ′d: a 4-gon below the line ad

Oab ′c ′ ∧Ob ′c ′d → Bac ′d

▶ Combine them to block 6-holes

Aacd ∨ Bac ′d ∨Hacc ′

a

b

b ′

c

c ′

d

This reduces the size of the encoding to O(n4) clauses

Empty Hexagon 14 / 21

Symmetry Breaking: Sorted & Rotated Around Point 1

1

2
3

4
5

1

2
3

4
5

place leftmost point at origin

1

2
3

4
5

stretch points to the right to be
within y = x and y = −x

1
2

34
5

rotate by 45 degrees

1

2 3
4

5

projective transformation
(x, y) 7→ (y/(x+ ϵ), 1/(x+ ϵ))

Empty Hexagon 15 / 21

Realizability Constraints

Under the assumption that points are sorted from left to right

a
b

c

d Oabc Oabd Oacd Obcd

+ + + +
+ + + −
+ + − −
+ − − −
− − − −
− − − +
− − + +
− + + +

Block multiple sign changes with Θ(n4) (ternary) clauses
[Felsner & Weil ’01]

Empty Hexagon 16 / 21

Impact of the Encoding

Four different encodings of a random subproblem

▶ T : the trusted encoding

▶ O1: the explicit encoding with a single empty triangle

▶ O2: reduce the size of O1 with auxiliary variables to O(n4)

▶ O3: O2 without redundant clauses

Γ #var #clause #conflict #propagation time (s)

T 62 930 1 171 942 1 082 569 1 338 662 627 243.07
O1 62 930 5 823 078 228 838 282 774 472 136.20
O2 75 110 667 005 211 272 343 388 591 45.49
O3 75 110 436 047 234 755 340 387 692 39.46

Empty Hexagon 17 / 21

Problem Partitioning

Partitioning to split the problem into easier subproblems

▶ Original problem UNSAT iff all subproblems UNSAT

▶ Split on variables Oa,a+1,a+2 starting from the middle

▶ One parameter: the length ℓ, roughly 1.83ℓ cubes

▶ Tested on: 24 points contain 6-hole or 7-gon

ℓ #cubes avg time (s) max time (s) total (h)

21 312 418 6.99 66.86 606.55
19 89 384 13.61 123.70 337.96
17 25 663 34.29 293.10 244.50
15 7393 112.61 949.50 231.27
13 2149 431.26 3 347.59 257.44
11 629 1 847.46 11 844.05 322.79
9 188 7 745.14 32 329.05 404.47
7 57 32 905.90 105 937.76 521.01

Empty Hexagon 18 / 21

Empty Hexagon Theorem Summary

Theorem: h(6) = 30
▶ Partitioned problem using 312 418 cubes (ℓ = 21)
▶ Total runtime: 17 000 CPU hours on AWS
▶ Linear speedups using 1 000 machines
▶ Proof: 180 terabytes in unprocessed LRAT format
▶ Validated with formally-verified checker

100K 200K 300K
10−1

100

101

102

103

ru
nt
im

e
(s
ec
on
ds
)

Empty Hexagon 19 / 21

Verification

The optimization steps are validated or part of the proof

Concurrent solving and proof checking for the first time

▶ The solver pipes the proof to a verified checker

▶ This avoids storing/writing/reading huge files

▶ Verified checker can easily catch up with the solver

CMU students have formalized and verified all parts in Lean

▶ Paper submitted to ITP ’24

Empty Hexagon 20 / 21

Conclusions

Theorem
h(6) = 30

SAT appears to be the most effective technology to solve a
range of problems in computational geometry

Many interesting open problems:

▶ Minimum number of 4-gons / 5-gons / 6-gons

▶ Determine whether g(7) = 33

▶ Unbalanced configurations (points can be collinear)

Empty Hexagon 21 / 21

