Certified Knowledge Compilation

with Application to
Verified Model Counting

Randal E. Bryant
Wojciech Nawrocki
Jeremy Avigad
Marijn J. H. Heule

Carnegie
Mellon
University

SAT, 2023

1/32

Motivation: Automated Reasoning Programs

Reasoning

Formalized
Problem Tool

P Outcome

2/32

Motivation: Automated Reasoning Programs

Reasoning

Formalized
Problem Tool

- Outcome

Standard Tools
» Lingering doubt about whether result can be trusted

> If find bug in tool, must rerun all prior verifications

2/32

Motivation: Automated Reasoning Programs

Reasoning

Formalized
Problem Tool

- Outcome

Standard Tools
» Lingering doubt about whether result can be trusted
> If find bug in tool, must rerun all prior verifications
Formally Verified Tools
» Hard to develop

» Hard to make scalable

2/ 32

Proof-Generating Automated Reasoning Programs

Proof Checker

Formalized Reasonmg

Problem Tool

- Outcome

Proof-Generating Tools
» Verify individual executions, not entire program
» Can have bugs in tool but still trust result

» Can we trust the checker?
Ideal: formally verified

3/32

Model Counting

Formula ¢ Models M(¢)

[71 V x3V 74] A

[X1VX3Vxs] A {X1,X2,X3,Xa} {X1,X2,X3,Xa}
[X1 V X3 \/Y4] A {X1,x2,x3,xa} {x1,X2,X3,X4}
[x1VX3Vx] A {X1,%2,%3,Xa} {x1,X2,X3,Xa}
[x1V Xx2]

Definitions
» Input variables x1, X2, ..., X,

» Assignment: o = {l1,02,...,¢,} with each ¢; € {x;,X;}
» Models: M(¢) is set of satisfying assignments for formula ¢

4 /32

Model Counting

Formula ¢ Models M(¢)

[Yl V x3V 74] A

[X1VX3Vxs] A {X1,X2,X3,Xa} {X1,X2,X3,Xa}
[X1 V X3 \/Y4] A {X1,x2,x3,xa} {x1,X2,X3,X4}
[x1VX3Vx] A {X1,%2,%3,Xa} {x1,X2,X3,Xa}
[x1V Xx2]

Definitions
» Input variables x1, X2, ..., X,

» Assignment: o = {l1,02,...,¢,} with each ¢; € {x;,X;}
» Models: M(¢) is set of satisfying assignments for formula ¢

Model Counting Problem
» Given formula ¢, compute |[M(¢)]
» Challenging: #SAT more difficult than SAT

4 /32

Knowledge Compilation

» Darwiche [DarMar-2002]

(Hard)

(Easy)

Knowledge Compiled Model
¢ Compiler Form Counter [M(9)]

Convert CNF formula into more tractable representation
> Potentially exponential size

» Model counting polynomial in size of representation

5 /32

Knowledge Compilation

» Darwiche [DarMar-2002]

(Hard)

(Easy)

Knowledge Compiled Model
¢ Compiler Form Counter [M(9)]

Convert CNF formula into more tractable representation
> Potentially exponential size

» Model counting polynomial in size of representation

Concerns:
» Is the compiled form logically equivalent to the input formula?

» s the counting computed correctly?

5 /32

(Weighted) Model Counting

> Assign weight w(x;) to each input variable x;
e 0.0 < w(x)<1.0

» Define w(x;j) =1 — w(x;)
o Write as ~w(x;)

» Weighted count A(¢, w) of formula ¢:

Apw) = Y I we)

aEM(¢) Lica

Standard Model Counting

> w(x)=w(x;)=1/2forall i
» A(¢, w) gives density of function
e Fraction of assignments that satisfy ¢

» Scale by 2" to get model count

6 /32

Partitioned-Operation Formulas

Allowed Operations
> Product: ¢1 AP ¢2, where D(¢p1) N D(¢p2) =0
e D(¢): Set of variables occuring in ¢

> Sum: ¢ VP o, where M(61) N M(do) = 0
> Negation: —¢
Weighted Count of Partitioned Formula
A(gr AP d2, w) = A(d1,w) X A2, w)
A(p1 VP g2, w) = A(¢1,w) + A2, w)

A(_‘¢7 W) = NA(¢7W)

7/32

Partitioned-Operation Graph (POG)

r
Formula ¢ X1 \
[Yl V x3V Y4] A ‘
[?1 V X3V X4] VAN @ @
[X1 V x3V Y4] A X2
[Xl V X3V X4] VAN
Bk
X

» Directed graph representation of partitioned-operation formula
» Each edge can be negative or positive

8 /32

Weighted Count of POG

X1
X2

X3

X4

» Evaluation: Number of operations linear in graph size

9/32

Certifying Toolchain

.cnf

o

Proof

Knowledge ddmnt
deand Generator

Compiler

I_ Trusted Code
Proof OK /

o Weighted > A((ZSI; W)

@ Counter

» Knowledge Compiler (D4 [LagMar-2017]): Convert CNF into
representation using only partitioned operations

» Proof Generator: Generate file combining POG definition +
equivalence proof

» Proof Checker: Validate proof file

> Weighted Counter: Compute standard or weighted model
count

10 / 32

Verifying the Trusted Code

.cnf

o

I_ Verified Code

Proof OK /

g Weighted
@ Counter ’A((ZS/’W)

Knowledge
Compiler

Proof
.ddnnf Generator

Using the Lean 4 theorem prover [DemUIr-2021]
» Soundness of proof system
e Helped us identify unsoundness in our prototype proof rules
» Verified proof checker
e Around 6x slower than one implemented in C

> Verified weighted counter

11 /32

Formally Verified Theorems

Theorem (Proof framework and checker correctness)

If the CPOG proof checker has assembled POG P starting from
input formula ¢;, and the final check succeeds, then ¢, is logically
equivalent to the formula ¢p represented by P.

Theorem (Correctness of efficient weighted counter)

For any POG P, the weighted counter executed on P with weights
w returns A(¢p, w).

12 /32

Related Work: CD4

CDA4: Certifying D4 [CapLagMar-2021]
» Modified version of D4

» Generates annotated output + clausal proof in DRAT format
> Verify with checker + DRAT-TRIM [HeuHunWet-2013]

> Experiments: Scales very well

Limitations:

» Proof framework tied closely to compiler implementation
» No formal proof of soundness
e Found exploitable weakness

13 /32

Related Work: MICE

MICE: Proof framework for top-down model counters
[FicHecRol-2022]

» Modify model counter or generate proof from D4 output
> Generates series of proof obligations

» Experiments: Scaling problems when many shared subgraphs

Limitations:
» Only verifies standard model counting
» Proof framework based on specific class of model counters
» No formal proof of soundness

» No verified checker

14 / 32

Importance of Formal Verification
Claim:

Any proof framework that has not been
mechanically verified is unsound

» Borne out by our own experience

15 / 32

CPOG File: Declaration + Proof

Clausal Representation of POG 6p

» Tseitin encoding of POG operations

e Extension variable u for each operation node u
e Node u with k children characterized by k + 1 defining clauses

» Each child indicated by literal

e Positive or negated argument
e Input variable or result from other operation

» Unit clause [r] for root node r

Proof Steps

» Sequence of clause additions and deletions

16 / 32

CPOG Proof Objective

o1(X) <= FZ60p(X,2)

> ¢;: Input formula
» Op: POG formula

e Defining clauses for POG
e Unit clause [r] for root literal

> Z: extension variables for the POG operations

» For any assignment « to X:

e Defining clauses induce unique extension a* to X U Z
e « satisfies ¢, if and only if a*(r) =1

Proof Methodology
» Transform ¢, to 0p
e Via sequence of equivalence-preserving proof steps

17 / 32

CPOG Example: Formula

» Encode formula x; <> xo.
» CNF representation:
[x1 VX2] A [X1V %]

Clause Database

ID Literals Explanation

1 1-2 Input
2 -12 Input

18 / 32

CPOG Example: POG Declaration

,
Clause Database

55 ID Literals Explanation

X1 ‘\ 1 1-2 :nput
@ p3 2 -12 nput
X 3 312 p3
. 4 -3 -1
CPOG Declarations 5 -3 .9

3 p3-1-2 0

19 /32

CPOG Example: POG Declaration

Clause Database

r

x1

CPOG Declarations

3 p3-1-2 0

ID Literals Explanation
1 -2 Input

2 -12 Input

3 312 P3

4 -3 -1

5 -3 -2

6 4 -1 -2 pa

7 -41

8 -4 2

6 p412 0

19 /32

CPOG Example: POG Declaration

Clause Database

r ID Literals Explanation
1 1 -2 Input
@ S5 2 -12 Input
R NG, 3 312 p3
X 5 -3 -2
CPOG Declarations 6 4-1-2 ps4
7T -41
3 p3-1-2 0 8 -4 2
Spiéi478 9 534 5
° 10 5 -3
11 5 -4

19 /32

CPOG Example: POG Declaration

, Clause Database

Ok

ID Literals Explanation

1 1 -2 Input
X1 <7 \ 2 -12 Input
@ P 3 312 p3
X2 4 -3 -1
CPOG Declarations > 82
6 4 -1 -2 ps
9 53447 0 7 41
» Sum declaration must justify 8 42
mutual exclusion 9 -534 sg
» Resolving clauses 4 and 7 gives 10 5 -3
11 5 -4

P3V Py

19 /32

CPOG Proof Structure: Forward Implication

o1(X) = NZ0p(X,2)

» Add clauses by reverse unit propagation (RUP)
» Terminating with unit clause [r]

» Any assignment satisfying ¢; (when extended) causes the
POG to evaluate to true

20 / 32

CPOG Example: Forward Implication

r

(vP)ss
X1

CPOG Assertions

12 a-25 0 1116

0

13 a b 0 101223 O

> Must give justifying RUP
sequences

» Finish with unit clause asserting

root literal

1 1-2 Input
2 -12 Input
3 312 P3

4 -3 -1

5 -3 -2

6 4 -1 -2 pa

7 -4 1

8 -4 2

9 -534 s
10 5 -3

11 5 -4

12 -2 5

13 5 Root literal

21 /32

Forward Proof Generation Methods

Monolithic

» Single call to proof-generating SAT solver
» Experimentally: Scales to POGs with ~ 10° defining clauses

Structural

» Top-down recursion on POG structure
» Avoid exponential expansion by defining and applying lemmas
e Can express within CPOG structure

» Experimentally: Scales to POGs with ~ 108 defining clauses

22 /32

CPOG Proof Structure: Reverse Implication

Reverse Implication Proof

NZ0p(X,2) = ¢i(X)

» Delete clauses by RUP
e Deleted clause implied by remaining ones

» Only clausal representation of POG 6p remains at end

23 /32

CPOG Example: Reverse Implication

1 1 -2 Input
2 -12 Input
3 312 P3
4 -3 -1
CPOG Deletions 5 -3 -9
d 12 1116 0 6 4 -1 -2 pg
7 -4 1
> All deletions must give justifying _ o~ °
RUP sequence 9 -534 ss
10 5 -3
11 5 -4
12 Deleted
13 5 Root literal

24 / 32

CPOG Example: Reverse Implication

CPOG Deletions

d 12 1116 0

d 1 13579 0

» All deletions must give justifying
RUP sequence

1 Deleted
2 -12 Input

3 312 P3

4 -3 -1

5 -3 -2

6 4 -1 -2 pa

7 -4 1

8 -4 2

9 -534 sg

10 5 -3

11 5 -4

12 Deleted
13 5 Root literal

24 / 32

CPOG Example: Reverse Implication

1 Deleted
2 Deleted
3 312 P3
CPOG Deletions 4 -3 -1
5 -3 -2
d 12 11 1 6 0
d 1 13579 0 6 4-1-2 ps4
d 2 13489 0 r 41
8 -4 2
> All deletions must give justifying 9 534 s
RUP sequence 10 5 -3
11 5 -4
12 Deleted
13 5 Root literal

24 / 32

Proof Result
Final Clause Database: 6p

ID Literals Explanation

3 312 P3
.. 4 -3 -1
Initial Clause Database: ¢, 5 -3 -9
ID Literals Explanation 6 4 -1 -2 pa
1 1 -2 Input 7 41
2 -12 Input 8 -42
9 -534 S5
10 5 -3
11 5 -4
13 5 Root literal

» Transformed input formula ¢; into POG formula 0p

e Via equivalence-preserving proof steps
25 / 32

CPOG Checking Requirements

» Partitioned product: D(¢1) N D(¢p2) = 0

e Syntactic check of dependencies

» Partitioned sum: M(¢1) N M(gp2) =0

e Check of mutual-exclusion RUP sequence

» Clause addition and deletion
e Check of RUP sequence

26 / 32

Experimental Evaluation

Benchmark Problems:

» 180 unique formulas from 2022 unweighted and weighted
model counting competitions

D4 Execution
» Time limit of 4000 seconds
» Completed 124 problems

» Converted to POGs ranging from 304 to 2,761,457,765
defining clauses

Running our toolchain
» Limited CPOG generation to 10,000 seconds
» Full proofs for 108 problems
> Reverse implication proofs for 9 more
» No proofs of 7

27 / 32

Experimental Results:

Toolchain Runtime

,,,,,,,,,, e ATk E 4 T T o e s e S =
10,000 - |*Full validation 4 2117 1 ’
=Reverse implication = .' [l
= +No validation bZ AR 0
2 .
o
o Ly .
$1,000 ©
b £ 5
€ . o
3 % .
[s} .
3 o o .
- . ’.'
A
2 100 1000x Tl s Al
.20 e e *
e % e = s 2
.® .
el 5 i
£ . oo @
_ . .
@ 10 100 .,
£ -
S .
£ o
g .
g 10 10,
5]
2
[
1Y)
3
Ix 0.1x
6 0.1 =-.
o
.
00 I A 1 e M 1 |
5. 0.1 1.0 10 100 1,000

D4 runtime (seconds)

Ratios
Min
0.5

Harmonic mean
5.9%x

Median
16.4x

Max
465.8 x

28 / 32

Experimental Results

Defining + Proof Clauses

: CPOG Sizes

7777777777777777777777777777777777777 T T T e o 910
10° B
s
.
® o
P
108 ¢ L ORE |
B
Lo
- 110,000 o %y
107 e, |
L 7 "‘:‘.
1,000% A

3 » .|
100 | . '.3'

e

. ‘e

105 100x f |

.

.
1041 10x - - i
«Full validation
. =Reverse implication

Wl 1x *No validation |

.
102 | | | | | | |

102 103 10* 10° 100 107 108 10°

Defining Clauses

10t

Ratios
Min
1.5x

Harmonic mean
3.1x

Median
2.7%

Max
6073.0x

29 / 32

Final Thoughts

Observations

» Toolchain can handle all but largest outputs from D4
» Framework is very general
e E.g., can generate, prove, and apply lemmas without any

extensions
e Not tied to particular compilation method
Future Work
» Improve speed and capacity of toolchain
» Handle outputs from other knowledge compilers
» Certification of other automated reasoning tools

30 /32

Supplementary Information

Code
https://github.com/rebryant/cpog
Documentation

https://doi.org/10.5281/zenodo.7966174

> Worked example
> More details on algorithms
» More details on formal verification

» Lots of experimental results

31/ 32

https://github.com/rebryant/cpog
https://doi.org/10.5281/zenodo.7966174

References

CapLagMar-2021 F. Capelli, J.-M. Lagniez, and P. Marquis, “Certifying top-down
decision-DNNF compilers”, AAAI, 2021

DarMar-2002 A. Darwiche and P. Marquis, “A knowledge compilation map,”
JAIR, 2002

DemUIr-2021 L. de Moura and S. Ulrich, “The Lean 4 theorem prover and
programming language,” CADE, 2021

FicHecRol-2022 J. Fichte, M. Hecher, and V. Roland, “Proofs for propositional
model counting,” SAT 2022.

HeuHunWet-2013 M. J. H. Heule, W. A. Hunt, Jr., N. Wetzler, “Trimming while
checking clausal proofs,” FMCAD, 2013.

LagMar-2017 J.-M. Lagniez and P. Marquis, “An improved decision-DNNF
compiler,” [JCAI, 2017

32 /32

