Certified Knowledge Compilation with Application to Verified Model Counting

Randal E. Bryant Wojciech Nawrocki Jeremy Avigad *Marijn J. H. Heule*

Carnegie Mellon University

SAT, 2023

Motivation: Automated Reasoning Programs

Motivation: Automated Reasoning Programs

Standard Tools

- Lingering doubt about whether result can be trusted
- ▶ If find bug in tool, must rerun all prior verifications

Motivation: Automated Reasoning Programs

Standard Tools

- Lingering doubt about whether result can be trusted
- If find bug in tool, must rerun all prior verifications

Formally Verified Tools

- ► Hard to develop
- ► Hard to make scalable

Proof-Generating Automated Reasoning Programs

Proof-Generating Tools

- Verify individual executions, not entire program
- Can have bugs in tool but still trust result
- Can we trust the checker?

Ideal: formally verified

Model Counting

Formula ϕ	Models	$\mathcal{M}(\phi)$
$[\overline{x}_1 \lor x_3 \lor \overline{x}_4] \land$		
$[\overline{x}_1 \vee \overline{x}_3 \vee x_4] \wedge$	$\{\overline{x}_1,\overline{x}_2,\overline{x}_3,\overline{x}_4\}$	$\{\overline{x}_1,\overline{x}_2,x_3,x_4\}$
$[x_1 \lor x_3 \lor \overline{x}_4] \land$	$\{\overline{x}_1, x_2, x_3, x_4\}$	$\{x_1,\overline{x}_2,x_3,x_4\}$
$[x_1 \vee \overline{x}_3 \vee x_4] \wedge$	$\{\overline{x}_1, x_2, \overline{x}_3, \overline{x}_4\}$	$\{x_1, \overline{x}_2, \overline{x}_3, \overline{x}_4\}$
$[\overline{x}_1 \lor \overline{x}_2]$		

Definitions

- ▶ Input variables $x_1, x_2, ..., x_n$
- ▶ Assignment: $\alpha = \{\ell_1, \ell_2, \dots, \ell_n\}$ with each $\ell_i \in \{x_i, \overline{x}_i\}$
- lacktriangle Models: $\mathcal{M}(\phi)$ is set of satisfying assignments for formula ϕ

Model Counting

Definitions

- ▶ Input variables $x_1, x_2, ..., x_n$
- ▶ Assignment: $\alpha = \{\ell_1, \ell_2, \dots, \ell_n\}$ with each $\ell_i \in \{x_i, \overline{x}_i\}$
- lacktriangle Models: $\mathcal{M}(\phi)$ is set of satisfying assignments for formula ϕ

Model Counting Problem

- ▶ Given formula ϕ , compute $|\mathcal{M}(\phi)|$
- ► Challenging: #SAT more difficult than SAT

Knowledge Compilation

► Darwiche [DarMar-2002]

Convert CNF formula into more tractable representation

- Potentially exponential size
- ▶ Model counting polynomial in size of representation

Knowledge Compilation

► Darwiche [DarMar-2002]

Convert CNF formula into more tractable representation

- Potentially exponential size
- Model counting polynomial in size of representation

Concerns:

- ls the compiled form logically equivalent to the input formula?
- Is the counting computed correctly?

(Weighted) Model Counting

- Assign weight $w(x_i)$ to each input variable x_i
 - $0.0 < w(x_i) < 1.0$
- ▶ Define $w(\overline{x}_i) = 1 w(x_i)$
 - Write as $\sim w(x_i)$
- ▶ Weighted count $\Delta(\phi, w)$ of formula ϕ :

$$\Delta(\phi, w) = \sum_{\alpha \in \mathcal{M}(\phi)} \prod_{\ell_i \in \alpha} w(\ell_i)$$

Standard Model Counting

- \blacktriangleright $w(x_i) = w(\overline{x}_i) = 1/2$ for all i
- $ightharpoonup \Delta(\phi, w)$ gives density of function
 - ullet Fraction of assignments that satisfy ϕ
- ightharpoonup Scale by 2^n to get model count

Partitioned-Operation Formulas

Allowed Operations

- ▶ **Product:** $\phi_1 \wedge^{\mathsf{p}} \phi_2$, where $\mathcal{D}(\phi_1) \cap \mathcal{D}(\phi_2) = \emptyset$
 - $\mathcal{D}(\phi)$: Set of variables occurring in ϕ
- Sum: $\phi_1 \vee^{\mathsf{p}} \phi_2$, where $\mathcal{M}(\phi_1) \cap \mathcal{M}(\phi_2) = \emptyset$
- ▶ Negation: $\neg \phi$

Weighted Count of Partitioned Formula

$$\Delta(\phi_1 \wedge^{\mathsf{p}} \phi_2, w) = \Delta(\phi_1, w) \times \Delta(\phi_2, w)$$

 $\Delta(\phi_1 \vee^{\mathsf{p}} \phi_2, w) = \Delta(\phi_1, w) + \Delta(\phi_2, w)$
 $\Delta(\neg \phi, w) = \sim \Delta(\phi, w)$

Partitioned-Operation Graph (POG)

Formula ϕ $\begin{bmatrix} \overline{x}_1 \lor x_3 \lor \overline{x}_4 \end{bmatrix} \land \\ [\overline{x}_1 \lor \overline{x}_3 \lor x_4] \land \\ [x_1 \lor x_3 \lor \overline{x}_4] \land \\ [x_1 \lor \overline{x}_3 \lor x_4] \land \\ [\overline{x}_1 \lor \overline{x}_2] \end{bmatrix}$

- ▶ Directed graph representation of partitioned-operation formula
- ► Each edge can be negative or positive

Weighted Count of POG

▶ Evaluation: Number of operations linear in graph size

Certifying Toolchain

- ► Knowledge Compiler (D4 [LagMar-2017]): Convert CNF into representation using only partitioned operations
- ► Proof Generator: Generate file combining POG definition + equivalence proof
- Proof Checker: Validate proof file
- Weighted Counter: Compute standard or weighted model count

Verifying the Trusted Code

Using the Lean 4 theorem prover [DemUlr-2021]

- Soundness of proof system
 - Helped us identify unsoundness in our prototype proof rules
- Verified proof checker
 - Around 6× slower than one implemented in C
- Verified weighted counter

Formally Verified Theorems

Theorem (Proof framework and checker correctness)

If the CPOG proof checker has assembled POG P starting from input formula ϕ_I , and the final check succeeds, then ϕ_I is logically equivalent to the formula ϕ_P represented by P.

Theorem (Correctness of efficient weighted counter)

For any POG P, the weighted counter executed on P with weights w returns $\Delta(\phi_P, w)$.

Related Work: CD4

CD4: Certifying D4 [CapLagMar-2021]

- Modified version of D4
 - Generates annotated output + clausal proof in DRAT format
 - ► Verify with checker + DRAT-TRIM [HeuHunWet-2013]
- Experiments: Scales very well

Limitations:

- Proof framework tied closely to compiler implementation
- No formal proof of soundness
 - Found exploitable weakness

Related Work: MICE

MICE: Proof framework for top-down model counters [FicHecRol-2022]

- ▶ Modify model counter or generate proof from D4 output
- Generates series of proof obligations
- Experiments: Scaling problems when many shared subgraphs

Limitations:

- Only verifies standard model counting
- Proof framework based on specific class of model counters
- No formal proof of soundness
- No verified checker

Importance of Formal Verification

Claim:

Any proof framework that has not been mechanically verified is unsound

Borne out by our own experience

CPOG File: Declaration + Proof

Clausal Representation of POG θ_P

- Tseitin encoding of POG operations
 - Extension variable u for each operation node \mathbf{u}
 - Node \mathbf{u} with k children characterized by k+1 defining clauses
- Each child indicated by literal
 - Positive or negated argument
 - Input variable or result from other operation
- Unit clause [r] for root node r

Proof Steps

Sequence of clause additions and deletions

CPOG Proof Objective

$$\phi_I(X) \iff \exists! Z \theta_P(X, Z)$$

- $ightharpoonup \phi_I$: Input formula
- \triangleright θ_P : POG formula
 - Defining clauses for POG
 - Unit clause [r] for root literal
- Z: extension variables for the POG operations
- For any assignment α to X:
 - Defining clauses induce unique extension α^* to $X \cup Z$
 - α satisfies ϕ_I if and only if $\alpha^*(r) = 1$

Proof Methodology

- ► Transform ϕ_I to θ_P
 - Via sequence of equivalence-preserving proof steps

CPOG Example: Formula

- ▶ Encode formula $x_1 \leftrightarrow x_2$.
- ► CNF representation:

$$[x_1 \vee \overline{x}_2] \wedge [\overline{x}_1 \vee x_2]$$

ID	Literals	Explanation
1	1 -2	Input
2	-1 2	Input

CPOG Declarations

3 p 3 -1 -2 0

ID	Literals	Explanation
1 2	1 -2 -1 2	Input Input
3	3 1 2	p ₃
	-3 -1 -3 -2	
5	-3 -2	

CPOG Declarations

ID	Literals	Explanation
1	1 -2	Input
2	-1 2	Input
3	3 1 2	p ₃
4	-3 -1	
5	-3 -2	
6	4 -1 -2	p ₄
7	-4 1	
8	-4 2	

CPOG Declarations

3	p 3 -1 -2	0
6	p 4 1 2	0
9	s 5 3 4 4 7	0

ID	Literals	Explanation
1	1 -2	Input
2	-1 2	Input
3	3 1 2	p ₃
4	-3 -1	
5	-3 -2	
6	4 -1 -2	p ₄
7	-4 1	
8	-4 2	
9	-5 3 4	s ₅
10	5 -3	
11	5 -4	

CPOG Declarations

- Sum declaration must justify mutual exclusion
- Resolving clauses 4 and 7 gives $\overline{p}_3 \vee \overline{p}_4$.

ID	Literals	Explanation
1	1 -2	Input
2	-1 2	Input
3	3 1 2	p ₃
4	-3 -1	
5	-3 -2	
6	4 -1 -2	\mathbf{p}_4
7	-4 1	
8	-4 2	
9	-5 3 4	s ₅
10	5 -3	
11	5 -4	

CPOG Proof Structure: Forward Implication

$$\phi_I(X) \implies \exists ! Z \theta_P(X, Z)$$

- ► Add clauses by reverse unit propagation (RUP)
- ightharpoonup Terminating with unit clause [r]
- Any assignment satisfying ϕ_I (when extended) causes the POG to evaluate to true

CPOG Example: Forward Implication

CPOG Assertions

12	a -2 5	0	11 1 6	0
13	a 5	0	10 12 2 3	0

- Must give justifying RUP sequences
- ► Finish with unit clause asserting root literal

1 2	1 -2 -1 2	Input Input
3 4 5	3 1 2 -3 -1 -3 -2	p ₃
6 7 8	4 -1 -2 -4 1 -4 2	p ₄
9 10 11	-5 3 4 5 -3 5 -4	S ₅
12 13	-2 5 5	Root literal

Forward Proof Generation Methods

Monolithic

- Single call to proof-generating SAT solver
- lacktriangle Experimentally: Scales to POGs with $\sim 10^6$ defining clauses

Structural

- ► Top-down recursion on POG structure
- Avoid exponential expansion by defining and applying lemmas
 - Can express within CPOG structure
- ightharpoonup Experimentally: Scales to POGs with $\sim 10^8$ defining clauses

CPOG Proof Structure: Reverse Implication

Reverse Implication Proof

$$\exists ! Z \theta_P(X, Z) \implies \phi_I(X)$$

- Delete clauses by RUP
 - Deleted clause implied by remaining ones
- lacktriangle Only clausal representation of POG $heta_P$ remains at end

CPOG Example: Reverse Implication

CPOG Deletions

d 12 11 1 6 C

► All deletions must give justifying _ RUP sequence

1 2	1 -2 -1 2	Input Input
3 4 5	3 1 2 -3 -1 -3 -2	p ₃
6 7 8	4 -1 -2 -4 1 -4 2	p ₄
9 10 11	-5 3 4 5 -3 5 -4	s ₅
12 13	5	<i>Deleted</i> Root literal

CPOG Example: Reverse Implication

CPOG Deletions

d	12	11	1	6		0
d	1	13	5	7	9	0

► All deletions must give justifying RUP sequence

1 2	-1 2	<i>Deleted</i> Input
3 4 5	3 1 2 -3 -1 -3 -2	p ₃
6 7 8	4 -1 -2 -4 1 -4 2	p ₄
9 10 11	-5 3 4 5 -3 5 -4	S ₅
12 13	5	<i>Deleted</i> Root literal

CPOG Example: Reverse Implication

CPOG Deletions

d	12	11	1	6		0
d	1	13	5	7	9	0
d	2	13	4	8	9	0

► All deletions must give justifying RUP sequence

1 2		Deleted Deleted
3	3 1 2	n _o
4	-3 -1	p ₃
	-	
5	-3 -2	
6	4 -1 -2	\mathbf{p}_4
7	-4 1	
8	-4 2	
9	-5 3 4	s ₅
10	5 -3	
11	5 -4	
12		Deleted
13	5	Root literal

Proof Result

Initial Clause Database: ϕ_I

ID	Literals	Explanation
1	1 -2	Input
2	-1 2	Input

Final Clause Database: θ_P

ı ıııaı	Clause Da	itabase. vp
ID	Literals	Explanation
3	3 1 2	p ₃
4	-3 -1	
5	-3 -2	
6	4 -1 -2	p ₄
7	-4 1	
8	-4 2	
9	-5 3 4	s ₅
10	5 -3	
11	5 -4	
13	5	Root literal

- ► Transformed input formula ϕ_I into POG formula θ_P
 - Via equivalence-preserving proof steps

CPOG Checking Requirements

- ▶ Partitioned product: $\mathcal{D}(\phi_1) \cap \mathcal{D}(\phi_2) = \emptyset$
 - Syntactic check of dependencies
- ▶ Partitioned sum: $\mathcal{M}(\phi_1) \cap \mathcal{M}(\phi_2) = \emptyset$
 - Check of mutual-exclusion RUP sequence
- Clause addition and deletion
 - Check of RUP sequence

Experimental Evaluation

Benchmark Problems:

▶ 180 unique formulas from 2022 unweighted and weighted model counting competitions

D4 Execution

- ► Time limit of 4000 seconds
- Completed 124 problems
- Converted to POGs ranging from 304 to 2,761,457,765 defining clauses

Running our toolchain

- ► Limited CPOG generation to 10,000 seconds
- ► Full proofs for 108 problems
- Reverse implication proofs for 9 more
- ▶ No proofs of 7

Experimental Results: Toolchain Runtime

Experimental Results: CPOG Sizes

Final Thoughts

Observations

- Toolchain can handle all but largest outputs from D4
- Framework is very general
 - E.g., can generate, prove, and apply lemmas without any extensions
 - Not tied to particular compilation method

Future Work

- Improve speed and capacity of toolchain
- Handle outputs from other knowledge compilers
- Certification of other automated reasoning tools

Supplementary Information

Code

https://github.com/rebryant/cpog

Documentation

https://doi.org/10.5281/zenodo.7966174

- ► Worked example
- More details on algorithms
- More details on formal verification
- Lots of experimental results

References

- CapLagMar-2021 F. Capelli, J.-M. Lagniez, and P. Marquis, "Certifying top-down decision-DNNF compilers", AAAI, 2021
 - DarMar-2002 A. Darwiche and P. Marquis, "A knowledge compilation map," JAIR, 2002
 - DemUlr-2021 L. de Moura and S. Ulrich, "The Lean 4 theorem prover and programming language," CADE, 2021
 - FicHecRol-2022 J. Fichte, M. Hecher, and V. Roland, "Proofs for propositional model counting," SAT 2022.
- HeuHunWet-2013 M. J. H. Heule, W. A. Hunt, Jr., N. Wetzler, "Trimming while checking clausal proofs," FMCAD, 2013.
 - LagMar-2017 J.-M. Lagniez and P. Marquis, "An improved decision-DNNF compiler," IJCAI, 2017