
TaSSAT: Transfer and Share SAT

Md Solimul Chowdhury, Cayden R. Codel, and Marijn J.H. Heule

30th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems

Luxembourg April 8, 2024

TaSSAT 1 / 10



Local Search and DDFW Overview

Dozens of local search algorithms for SAT

▶ On various problems much faster than CDCL

▶ Most algorithms use local flips (to be prob. complete)

▶ We studied weight transfer algorithms (with global flips)

Arguably the best weight transfer algorithm is DDFW

▶ Divide and Distribute Fixed Weights

▶ Original solver by Ishtaiwi et al. (2005) was never released

▶ Tompkins reverse engineered the details for UBCSAT

▶ Various papers mention effectiveness of DDFW in UBCSAT

TaSSAT 2 / 10



Local Search and DDFW Overview

Dozens of local search algorithms for SAT

▶ On various problems much faster than CDCL

▶ Most algorithms use local flips (to be prob. complete)

▶ We studied weight transfer algorithms (with global flips)

Arguably the best weight transfer algorithm is DDFW

▶ Divide and Distribute Fixed Weights

▶ Original solver by Ishtaiwi et al. (2005) was never released

▶ Tompkins reverse engineered the details for UBCSAT

▶ Various papers mention effectiveness of DDFW in UBCSAT

TaSSAT 2 / 10



Weight Transfer Heuristics

Key heuristic: transfer weight from neighboring clauses

▶ Clauses are neighboring if they share a literal

▶ Transfer weight from satisfied to falsified clauses

▶ Transfer from highest weight satisfied neighboring clause

Divide and Distribute Fixed Weights (DDFW) heuristics

▶ Weight initialization W(C) = w0 = 8

▶ Transfer weights if no weight-reducing variable to flip

▶ Transfer a weight of 1 if W(Csatisfied) = w0

▶ Transfer a weight of 2 if W(Csatisfied) > w0

TaSSAT 3 / 10



Weight Transfer Heuristics

Key heuristic: transfer weight from neighboring clauses

▶ Clauses are neighboring if they share a literal

▶ Transfer weight from satisfied to falsified clauses

▶ Transfer from highest weight satisfied neighboring clause

Divide and Distribute Fixed Weights (DDFW) heuristics

▶ Weight initialization W(C) = w0 = 8

▶ Transfer weights if no weight-reducing variable to flip

▶ Transfer a weight of 1 if W(Csatisfied) = w0

▶ Transfer a weight of 2 if W(Csatisfied) > w0

TaSSAT 3 / 10



New Weight Transfer Heuristics

Divide and Distribute Fixed Weights (DDFW) heuristics

▶ Weight initialization W(C) = w0 = 8 (int)

▶ Transfer weights if no weight-reducing variable to flip

▶ Transfer a weight of 1 if W(Csatisfied) = w0

▶ Transfer a weight of 2 if W(Csatisfied) > w0

Linear Weight Transfer heuristics [NFM 2023]

▶ Weight initialization W(C) = w0 (float)

▶ Transfer weights if no weight-reducing variable to flip

▶ Transfer a weight of pinit ×w0 if W(Csatisfied) = w0

▶ Otherwise a weight of pbase ×w0 + pcurr ×W(Csatisfied)

TaSSAT 4 / 10



Optimizing the Parameters

PAR-2: average runtime with timeout counted as 2× timeout

0.0
0.05

0.1
0.15

0.20.0
0.1

0.2
0.3

1,000

1,200

cur
rcp

tbasepct

PA
R

-2
sc

or
e

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.1

0.2
0.3

1,000

1,200

ini
tpc

tbasepct

PA
R

-2
sc

or
e

Observations:

▶ Combining pbase (basepct) and pcurr (currpct) is best

▶ Max pinit (initpct), i.e., taking all weight, is best

TaSSAT 5 / 10



Solver Comparison

Solvers used for runtime comparison

▶ TaSSAT: The solver presented in this talk/paper

▶ YalSAT-Lin: Weight transfer with NFM’23 paper heuristics

▶ YalSAT-DDFW: Weight transfer with DDFW heuristics

▶ YalSAT-ProbSAT: Default YalSAT

▶ UBCSAT-DDFW: Only public implementation of DDFW

TaSSAT 6 / 10



Results on SAT Competition Benchmarks

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
600

650

700

750

800

850

900

950

1,000

1,050

runtime (secs)

so
lv

ed
an

ni
ve

rs
ar

y
tr

ac
k

in
st

an
ce

s

TaSSAT(1040)
YalSAT-Lin(969)
UBCSAT-DDFW(874)
YalSAT-DDFW(859)
YalSAT-Prob(857)

TaSSAT 7 / 10



Data-Structure Sharing

PalSAT:

▶ Each tread reads / stores / preprocesses formula

▶ Redundant computation

▶ Large memory footprint

PaSSAT:

▶ Master thread reads / stores / preprocesses formula

▶ Shared clause database and lookup table

▶ Large memory reduction when using many cores

TaSSAT 8 / 10



Results on van der Waerden Numbers

Color the numbers 1 to n red and blue without

▶ arithmetic progress of length 3 in red

▶ arithmetic progress of length k in blue

Best known results by Ahmed et al. using parallel SAT

▶ used DDFW in UBCSAT

▶ some bounds obtained by enforcing symmetries

result \ k 31 32 33 34 35 36 37 38 39

Known 930 1006 1063 1143 1204 1257 1338 1378 1418
PaSSAT 953 1011 1071 1145 1208 1260 1341 1380 1419

TaSSAT 9 / 10



Conclusions

TaSSAT: Arguably the best SAT-based local search solver

▶ open source: https://github.com/solimul/tassat

▶ best SLS performance on SAT Competition benchmarks

▶ improved many van der Waerden lower bounds

▶ PaSSAT has reduced memory footprint

Future work

▶ Communication between threads (e.g. sharing assignments)

▶ Combining TaSSAT with CDCL

▶ Further improve heuristics

TaSSAT 10 / 10

https://github.com/solimul/tassat

