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Local Search and DDFW Overview

Dozens of local search algorithms for SAT

▶ On various problems much faster than CDCL

▶ Most algorithms use local flips (to be prob. complete)

▶ We studied weight transfer algorithms (with global flips)

Arguably the best weight transfer algorithm is DDFW

▶ Divide and Distribute Fixed Weights

▶ Original solver by Ishtaiwi et al. (2005) was never released

▶ Tompkins reverse engineered the details for UBCSAT

▶ Various papers mention effectiveness of DDFW in UBCSAT
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Weight Transfer Heuristics

Key heuristic: transfer weight from neighboring clauses

▶ Clauses are neighboring if they share a literal

▶ Transfer weight from satisfied to falsified clauses

▶ Transfer from highest weight satisfied neighboring clause

Divide and Distribute Fixed Weights (DDFW) heuristics

▶ Weight initialization W(C) = w0 = 8

▶ Transfer weights if no weight-reducing variable to flip

▶ Transfer a weight of 1 if W(Csatisfied) = w0

▶ Transfer a weight of 2 if W(Csatisfied) > w0
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New Weight Transfer Heuristics

Divide and Distribute Fixed Weights (DDFW) heuristics

▶ Weight initialization W(C) = w0 = 8 (int)

▶ Transfer weights if no weight-reducing variable to flip

▶ Transfer a weight of 1 if W(Csatisfied) = w0

▶ Transfer a weight of 2 if W(Csatisfied) > w0

Linear Weight Transfer heuristics [NFM 2023]

▶ Weight initialization W(C) = w0 (float)

▶ Transfer weights if no weight-reducing variable to flip

▶ Transfer a weight of pinit ×w0 if W(Csatisfied) = w0

▶ Otherwise a weight of pbase ×w0 + pcurr ×W(Csatisfied)
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Optimizing the Parameters

PAR-2: average runtime with timeout counted as 2× timeout
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Observations:

▶ Combining pbase (basepct) and pcurr (currpct) is best

▶ Max pinit (initpct), i.e., taking all weight, is best
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Solver Comparison

Solvers used for runtime comparison

▶ TaSSAT: The solver presented in this talk/paper

▶ YalSAT-Lin: Weight transfer with NFM’23 paper heuristics

▶ YalSAT-DDFW: Weight transfer with DDFW heuristics

▶ YalSAT-ProbSAT: Default YalSAT

▶ UBCSAT-DDFW: Only public implementation of DDFW
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Results on SAT Competition Benchmarks
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Data-Structure Sharing

PalSAT:

▶ Each tread reads / stores / preprocesses formula

▶ Redundant computation

▶ Large memory footprint

PaSSAT:

▶ Master thread reads / stores / preprocesses formula

▶ Shared clause database and lookup table

▶ Large memory reduction when using many cores
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Results on van der Waerden Numbers

Color the numbers 1 to n red and blue without

▶ arithmetic progress of length 3 in red

▶ arithmetic progress of length k in blue

Best known results by Ahmed et al. using parallel SAT

▶ used DDFW in UBCSAT

▶ some bounds obtained by enforcing symmetries

result \ k 31 32 33 34 35 36 37 38 39

Known 930 1006 1063 1143 1204 1257 1338 1378 1418
PaSSAT 953 1011 1071 1145 1208 1260 1341 1380 1419
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Conclusions

TaSSAT: Arguably the best SAT-based local search solver

▶ open source: https://github.com/solimul/tassat

▶ best SLS performance on SAT Competition benchmarks

▶ improved many van der Waerden lower bounds

▶ PaSSAT has reduced memory footprint

Future work

▶ Communication between threads (e.g. sharing assignments)

▶ Combining TaSSAT with CDCL

▶ Further improve heuristics
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