
Short Proofs Without New Variables

Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

CADE-26 in Gothenburg, Sweden August 8, 2017

Proofs of Unsatisfiability

Interference-Based Proofs

Propagation Redundancy

Evaluation

Conclusions

2 / 27

Proofs of Unsatisfiability

3 / 27

Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment:

xȳz

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs

4 / 27

Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment: xȳz

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs

4 / 27

Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment: xȳz

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs

4 / 27

What Is a Proof in SAT?

In general, a proof is a string that certifies the unsatisfiability of
a formula.

• Proofs are efficiently (usually polynomial-time) checkable...

... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . ,Cm of clauses.

• Every clause is either contained in the formula or derived from
two earlier clauses via the resolution rule:

C ∨ x x̄ ∨ D
C ∨ D

• Cm is the empty clause (containing no literals).

• There exists a resolution proof for every unsatisfiable formula.

5 / 27

What Is a Proof in SAT?

In general, a proof is a string that certifies the unsatisfiability of
a formula.

• Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . ,Cm of clauses.

• Every clause is either contained in the formula or derived from
two earlier clauses via the resolution rule:

C ∨ x x̄ ∨ D
C ∨ D

• Cm is the empty clause (containing no literals).

• There exists a resolution proof for every unsatisfiable formula.

5 / 27

What Is a Proof in SAT?

In general, a proof is a string that certifies the unsatisfiability of
a formula.

• Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . ,Cm of clauses.

• Every clause is either contained in the formula or derived from
two earlier clauses via the resolution rule:

C ∨ x x̄ ∨ D
C ∨ D

• Cm is the empty clause (containing no literals).

• There exists a resolution proof for every unsatisfiable formula.

5 / 27

Resolution Proofs

Example: F = (x̄ ∨ ȳ ∨ z) ∧ (z̄) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u)

Resolution proof:
(x̄ ∨ ȳ ∨ z), (z̄), (x̄ ∨ ȳ), (x ∨ ȳ), (ȳ), (ū ∨ y), (ū), (u),⊥

ū ∨ y

x̄ ∨ ȳ ∨ z z̄
x̄ ∨ ȳ x ∨ ȳ

ȳ
ū u

⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.

6 / 27

Resolution Proofs

Example: F = (x̄ ∨ ȳ ∨ z) ∧ (z̄) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u)

Resolution proof:
(x̄ ∨ ȳ ∨ z), (z̄), (x̄ ∨ ȳ), (x ∨ ȳ), (ȳ), (ū ∨ y), (ū), (u),⊥

ū ∨ y

x̄ ∨ ȳ ∨ z z̄
x̄ ∨ ȳ x ∨ ȳ

ȳ
ū u

⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.

6 / 27

Resolution Proofs

Example: F = (x̄ ∨ ȳ ∨ z) ∧ (z̄) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u)

Resolution proof:
(x̄ ∨ ȳ ∨ z), (z̄), (x̄ ∨ ȳ), (x ∨ ȳ), (ȳ), (ū ∨ y), (ū), (u),⊥

ū ∨ y

x̄ ∨ ȳ ∨ z z̄
x̄ ∨ ȳ x ∨ ȳ

ȳ
ū u

⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.

6 / 27

Interference-Based Proofs

7 / 27

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

8 / 27

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

8 / 27

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

8 / 27

Interference-Based Proofs

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 27

Interference-Based Proofs

Formula
≡

≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 27

Interference-Based Proofs

Formula
≡ ≡

≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 27

Interference-Based Proofs

Formula
≡ ≡ ≡

≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 27

Interference-Based Proofs

Formula
≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 27

Interference-Based Proofs

Formula
≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 27

Interference-Based Proofs

Formula
≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 27

DRAT: An Interference-Based Proof System

Popular example of an interference-based proof system: DRAT

DRAT allows the addition of so-called resolution asymmetric
tautologies (RATs) to a formula (whatever that means).

• It can be efficiently checked if a clause is a RAT.

• RATs are not necessarily implied by the formula.

• But RATs are redundant: their addition preserves satisfiability.

• A RAT check involves reasoning about the absence of facts.

I A clause is a RAT w.r.t. a formula if the formula contains no
clause such that . . .

Are there more general types of redundant clauses than RATs?

10 / 27

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

All Redundant Clauses

Are stronger redundancy notions still efficiently checkable?

11 / 27

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

Redundant ClausesResolvents

Are stronger redundancy notions still efficiently checkable?

11 / 27

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

Redundant ClausesResolventsRATs

Are stronger redundancy notions still efficiently checkable?

11 / 27

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

Redundant ClausesResolventsRATs?

Are stronger redundancy notions still efficiently checkable?

11 / 27

Propagation Redundancy

12 / 27

Main Contributions

We introduced new clause-redundancy notions:

• Propagation-redundant (PR) clauses

• Set-propagation-redundant (SPR) clauses

• Literal-propagation-redundant (LPR) clauses

LPR clauses coincide with RAT.

SPR clauses strictly generalize RATs.

PR clauses strictly generalize SPR clauses.

The redundancy notions provide the basis for new proof systems.

13 / 27

New Landscape of Redundancy Notions

SAT-EQ

PR SPR LPR

RAT

RS

BCSET

RUP

LOG-EQ

S

new

satisfiability

equivalence

logical

equivalence

14 / 27

Stronger Proof Systems: What Are They Good For?

The new proof systems can give short proofs of formulas that are
considered hard.

We have short SPR and PR proofs for the well-known pigeon
hole formulas (linear in the size of the input).

• Pigeon hole formulas have only exponential-size resolution proofs.

• If the addition of new variables via definitions is allowed, there are
polynomial-size proofs.

I So-called extended resolution proofs.

Our proofs do not require new variables.

å Search space of possible clauses is finite.

å Makes search for such clauses easier.

15 / 27

Redundancy as an Implication

A formula G is at least as satisfiable as a formula F if F � G .

Given a formula F and assignment α, we denote with F |α the
reduced formula after removing from F all clauses satisfied by α
and all literals falsified by α.

Theorem
Let F be a formula, C a clause, and α the smallest assignment
that falsifies C. Then, C is redundant w.r.t. F iff there exists an
assignment ω such that 1) ω satisfies C; and 2) F |α � F |ω.

This is the strongest notion of redundancy. However, it cannot be
checked in polynomial time (assuming P 6= NP), unless bounded.

16 / 27

Checking Redundancy Using Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning their
literal to true (until fixpoint or a conflict).

Let F be a formula, C a clause, and α the smallest assignment
that falsifies C . C is implied by F via UP (denoted by F `1 C) if
UP on F |α results in a conflict.

Implied by UP is used in SAT solvers to determine redundancy of
learned clauses and therefore `1 is a natural restriction of �.

We bound F |α � F |ω by F |α `1 F |ω.

Example: F = (x ∨ y ∨ z)∧ (x ∨ y ∨ z)∧ (x ∨ y ∨ z)∧ (x ∨ y ∨ z)
and G = (z). Observe that F � G , but that F 01 G .

17 / 27

Evaluation

18 / 27

Hand-crafted PR Proofs of Pigeon Hole Formulas

We manually constructed PR proofs of the famous pigeon hole
formulas and the two-pigeons-per-hole family.

The proofs consist only of binary and unit clauses.

Only original variables appear in the proof.

All proofs are linear in the size of the formula.

å Our proofs are smaller than Cook’s extended resolution proofs.

All resolution proofs of these formulas are exponential in size.

19 / 27

Pigeon Hole Formulas

Can n+1 pigeons be placed in n holes (at most one pigeon per hole)?

PHPn :=
∧

1≤ j ≤ n+1

(x1,j ∨ · · · ∨ xn,j) ∧
∧

1≤ i ≤ n

∧
1≤ j < k ≤ n+1

(x i ,j ∨ x i ,k)

Or in array notation for PHP3 (inspired by Haken):

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

1 2 3 4
1
2
3

20 / 27

All Binary PR Clauses for PHP3
1 2 3 4

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

21 / 27

PR Clauses for Pigeon Hole Formulas
Array notation for PHP3 (inspired by Haken):

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

1 2 3 4
1
2
3

Key observation: each clause x̄i ,j∨x̄l ,k with i 6= l , j 6=k is a PR clause.

C :
1 2 3 4

1
2
3

α :

1 2 3 4
1
2
3

ω :

1 2 3 4
1
2
3

One can learn a unit clause after learning n such binary clauses.

One can reduce PHPn to PHPn−1 by learning n such unit clauses.
22 / 27

Efficient PR Proof Checker

We implemented an efficient PR proof checker on top of the
DRAT-trim checker (used to validate SAT competition results).

Complexity is O(m3) with m being the number of proof steps.

However the worst-case is similar to DRAT proof checking...

å ..., and DRAT proof checking is in practice almost linear in the
size of the formula and proof, by aggressively deleting clauses to
limit the size of F .

PRcheck (CNF formula F ; PR proof (C1, ω1), . . . , (Cm, ωm))

for i ∈ {i , . . . ,m} do
for D ∈ F do

if D |ωi 6= > and (D |αi = > or D |ωi ⊂ D |αi) then

if F |αi 01 D |ωi then return failure

F := F ∪ {Ci}
return success

23 / 27

Comparison of Proof Size and Validation Times

size in the number of clauses validation time in seconds

24 / 27

Conclusions

25 / 27

Conclusions

We introduced new redundancy notions for SAT.

The redundancy notions strictly generalize RAT.

Proof systems based on these redundancy notions are strong.

• They allow for short proofs without new variables.

Proofs for the pigeon hole formulas are hand-crafted.

å Open problem: Automatically generate such short proofs.

• A first approach ”Satisfaction-Driven Clause Learning” under
submission.

26 / 27

Conclusions

We introduced new redundancy notions for SAT.

The redundancy notions strictly generalize RAT.

Proof systems based on these redundancy notions are strong.

• They allow for short proofs without new variables.

Proofs for the pigeon hole formulas are hand-crafted.

å Open problem: Automatically generate such short proofs.

• A first approach ”Satisfaction-Driven Clause Learning” under
submission.

26 / 27

Short Proofs Without New Variables

Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

CADE-26 in Gothenburg, Sweden August 8, 2017

	Proofs of Unsatisfiability
	Interference-Based Proofs
	Propagation Redundancy
	Evaluation
	Conclusions

