Short Proofs Without New Variables

Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

THE UNIVERSITY OF ' ! U
E XAS JOHANNES KEPLER

—— AT AUSTIN —— UNIVERSITAT LINZ

CADE-26 in Gothenburg, Sweden August 8, 2017

Proofs of Unsatisfiability
Interference-Based Proofs
Propagation Redundancy
Evaluation

Conclusions

2/ 27

Proofs of Unsatisfiability

Certifying Satisfiability and Unsatisfiability

m Certifying satisfiability of a formula is easy:

(xVy)AN(XVY)A(zVZ)

4 /27

Certifying Satisfiability and Unsatisfiability

m Certifying satisfiability of a formula is easy:

e Just consider a satisfying assignment: xyz

(xV¥)ANEVY)A(zVE)

e We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

4 /27

Certifying Satisfiability and Unsatisfiability

m Certifying satisfiability of a formula is easy:

e Just consider a satisfying assignment: xyz

(xV¥)ANEVY)A(zVE)

e We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

m Certifying unsatisfiability is not so easy:
e If a formula has n variables, there are 2" possible assignments.
=> Checking whether every assignment falsifies the formula is costly.
e More compact certificates of unsatisfiability are desirable.
= Proofs

4 /27

What Is a Proof in SAT?

m In general, a proof is a string that certifies the unsatisfiability of
a formula.

e Proofs are efficiently (usually polynomial-time) checkable...

5/ 27

What Is a Proof in SAT?

m In general, a proof is a string that certifies the unsatisfiability of
a formula.

e Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

5/ 27

What Is a Proof in SAT?

m In general, a proof is a string that certifies the unsatisfiability of
a formula.

e Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

m Example: Resolution proofs
e A resolution proof is a sequence Cy,..., C, of clauses.
e Every clause is either contained in the formula or derived from

two earlier clauses via the resolution rule:

CVx xV D
cvD

o Cp, is the empty clause (containing no literals).

e There exists a resolution proof for every unsatisfiable formula.

5/ 27

Resolution Proofs
m Example: F=(XxVyVz)AZ)A(xVy)A(TGVy)A(u)

m Resolution proof:
(XVyV2),(2),(xVy),(xVy)(¥),(@vy),(a),(uv), L

6/ 27

Resolution Proofs

m Example: F=(XxVyVz)AZ)A(xVy)A(TGVy)A(u)

m Resolution proof:
(XVyV2),(2),(xVy),(xVy)(¥),(@vy),(a),(uv), L

XVyVz z

xXVy xVy

6/ 27

Resolution Proofs

m Example: F=(XxVyVz)AZ)A(xVy)A(TGVy)A(u)

m Resolution proof:
(XVyV2),(2),(xVy),(xVy)(¥),(@vy),(a),(uv), L

m Drawbacks of resolution:

e For many seemingly simple formulas, there are only resolution
proofs of exponential size.

e State-of-the-art solving techniques are not succinctly expressible.

6/ 27

Interference-Based Proofs

7/27

Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
cvD (res) 5 (mp)

8/ 27

Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
o (e L5 (mp)

= |nference rules reason about the presence of facts.

o If certain premises are present, infer the conclusion.

8/ 27

Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
o (e L5 (mp)

= |nference rules reason about the presence of facts.

o If certain premises are present, infer the conclusion.

m Different approach: Allow not only implied conclusions.
e Require only that the addition of facts preserves satisfiability.
e Reason also about the absence of facts.

= This leads to interference-based proof systems.

8/ 27

Interference-Based Proofs

Formula

Proof

ENEN

9/ 27

Interference-Based Proofs

Formula

Proof

N

9/ 27

Interference-Based Proofs

Formula

. Proof

=

9/27

Interference-Based Proofs

Formula

Proof

9/27

Interference-Based Proofs

Formula

EEENEEEn

Proof

9/ 27

Interference-Based Proofs

Formula

EEENEEEn

Proof

m Checking whether additions preserve satisfiability should be efficient.

m Clauses whose addition preserves satisfiability are called redundant.

9/27

Interference-Based Proofs

Formula

EEENEEEn

Proof

m Checking whether additions preserve satisfiability should be efficient.
m Clauses whose addition preserves satisfiability are called redundant.

= |dea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9/ 27

DRAT: An Interference-Based Proof System

m Popular example of an interference-based proof system: DRAT

m DRAT allows the addition of so-called resolution asymmetric
tautologies (RATs) to a formula (whatever that means).

e It can be efficiently checked if a clause is a RAT.

e RATSs are not necessarily implied by the formula.

e But RATSs are redundant: their addition preserves satisfiability.
o A RAT check involves reasoning about the absence of facts.

> A clause is a RAT w.r.t. a formula if the formula contains no
clause such that ...

m Are there more general types of redundant clauses than RATs?

10 / 27

Redundant Clauses

m Strong proof systems allow addition of many redundant clauses.

All Redundant Clauses

11/ 27

Redundant Clauses

m Strong proof systems allow addition of many redundant clauses.

Resolvents

11/ 27

Redundant Clauses

m Strong proof systems allow addition of many redundant clauses.

11/ 27

Redundant Clauses

m Strong proof systems allow addition of many redundant clauses.

m Are stronger redundancy notions still efficiently checkable?

11/ 27

Propagation Redundancy

Main Contributions

m We introduced new clause-redundancy notions:
e Propagation-redundant (PR) clauses
e Set-propagation-redundant (SPR) clauses

e Literal-propagation-redundant (LPR) clauses
m LPR clauses coincide with RAT.
m SPR clauses strictly generalize RATS.
m PR clauses strictly generalize SPR clauses.

m The redundancy notions provide the basis for new proof systems.

13 /27

New Landscape of Redundancy Notions

SAT-EQ LOG-EQ

| PR | sPR |}—{ LPR |

O new | RAT |—'—»| RUP |
| RS |—'—~(| S |

e ST B] e

14 / 27

Stronger Proof Systems: What Are They Good For?

m The new proof systems can give short proofs of formulas that are
considered hard.

m We have short SPR and PR proofs for the well-known pigeon
hole formulas (linear in the size of the input).

e Pigeon hole formulas have only exponential-size resolution proofs.

e If the addition of new variables via definitions is allowed, there are
polynomial-size proofs.

> So-called extended resolution proofs.

m Our proofs do not require new variables.
= Search space of possible clauses is finite.

= Makes search for such clauses easier.

15 / 27

Redundancy as an Implication

A formula G is at least as satisfiable as a formula F if F E G.

Given a formula F and assignment «, we denote with F|q the
reduced formula after removing from F all clauses satisfied by «
and all literals falsified by «.

Theorem

Let F be a formula, C a clause, and « the smallest assignment
that falsifies C. Then, C is redundant w.r.t. F iff there exists an
assignment w such that 1) w satisfies C; and 2) F|a F F|w.

This is the strongest notion of redundancy. However, it cannot be
checked in polynomial time (assuming P # NP), unless bounded.

16 / 27

Checking Redundancy Using Unit Propagation

m Unit propagation (UP) satisfies unit clauses by assigning their
literal to true (until fixpoint or a conflict).

m Let F be a formula, C a clause, and « the smallest assignment
that falsifies C. C is implied by F via UP (denoted by F 1 C) if
UP on F|q results in a conflict.

m Implied by UP is used in SAT solvers to determine redundancy of
learned clauses and therefore -1 is a natural restriction of k.

= We bound F’a':F|w by F|a|—1 F|w
m Example: F=(xVyVz)AXVyVz)A(xVyVz)A(XVyVz)
and G = (z). Observe that F F G, but that F ¥ G.

17 /27

Evaluation

18 / 27

Hand-crafted PR Proofs of Pigeon Hole Formulas

We manually constructed PR proofs of the famous pigeon hole
formulas and the two-pigeons-per-hole family.

m The proofs consist only of binary and unit clauses.
m Only original variables appear in the proof.
m All proofs are linear in the size of the formula.
= Qur proofs are smaller than Cook’s extended resolution proofs.

m All resolution proofs of these formulas are exponential in size.

19 / 27

Pigeon Hole Formulas

Can n+1 pigeons be placed in n holes (at most one pigeon per hole)?

PHP, = /\ (Xl,j\/"'\/xn,j)/\ /\ /\ (Yi,jvyi,k)

1<j<n+1 1<i<nl<j<k<n+l

Or in array notation for PHP3 (inspired by Haken):

1234 1234 1234 1234

1[4+ 1)+ 1 + 1 +

2|+ 2| + 2 + 2 +

3|+ 3|+ 3 + 3 +
1234 1234 1234 1234 1234
i 1[- - 1 1 1
2 2 2| —- 2 2
3 3 3 3] — —-| 3 -

20/ 27

All Binary PR Clauses for PHP;

1234 1234 1234 1234 1234 1234

WN -
WN -

(A)II\)I—l
WN -
(.Qll\)l—l
con
WN -
WN -

WN -
WN -

WN -
WN =

wTJ»—A

wTJl—l

er\n—A

WN -
|

WN -
|

WN -
|

21 /27

PR Clauses for Pigeon Hole Formulas
Array notation for PHP; (inspired by Haken):

1234 1234 1234 1234
1]+ 1 + 1 + 1 +
2 [+ 2| + 2 + 2 +
3|+ 3|+ 3 + 3 +
1234 1234 1234 1234 1234
1[—= 1[— = 1 1 1
2 2 2| —- 2 2
3 3 3 3] — -] 3 -

Key observation: each clause X; j VX, with i/, j#k is a PR clause.

1234 1234 1234
-+

+ W
+

WN
WN -
WN =

+_

One can learn a unit clause after learning n such binary clauses.

One can reduce PHP, to PHP,_1 by learning n such unit clauses.
22 /27

Efficient PR Proof Checker

We implemented an efficient PR proof checker on top of the
DRAT-trim checker (used to validate SAT competition results).

m Complexity is O(m3) with m being the number of proof steps.
m However the worst-case is similar to DRAT proof checking...

= .., and DRAT proof checking is in practice almost linear in the
size of the formula and proof, by aggressively deleting clauses to
limit the size of F.

PRcheck (CNF formula F; PR proof (Ci,wi), ..., (Cm,wm))
forie {i,...,m} do
for D € F do
if D|w; # T and (D|a; =T or D|w; C D|q;) then
if F|a;¥1 D|w, then return failure
F=FuU {C,}
return success

23 /27

Comparison of Proof Size and Validation Times

‘O DRAT Proof < Formula

PR Proof

1000000

100000

10000

1000

size in the number of clauses

O DRAT Proof < PR Proof
10000

1000

100

0.1

validation time in seconds

24 /27

Conclusions

25 /27

Conclusions

m We introduced new redundancy notions for SAT.

m The redundancy notions strictly generalize RAT.

m Proof systems based on these redundancy notions are strong.

e They allow for short proofs without new variables.

26 / 27

Conclusions

m We introduced new redundancy notions for SAT.

m The redundancy notions strictly generalize RAT.

m Proof systems based on these redundancy notions are strong.

e They allow for short proofs without new variables.

m Proofs for the pigeon hole formulas are hand-crafted.
= QOpen problem: Automatically generate such short proofs.

e A first approach "Satisfaction-Driven Clause Learning” under
submission.

26 / 27

Short Proofs Without New Variables

Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

THE UNIVERSITY OF ' ! U
E XAS JOHANNES KEPLER

—— AT AUSTIN —— UNIVERSITAT LINZ

CADE-26 in Gothenburg, Sweden August 8, 2017

	Proofs of Unsatisfiability
	Interference-Based Proofs
	Propagation Redundancy
	Evaluation
	Conclusions

